Skip to main content
Log in

Triangle Geometry of the Qubit State in the Probability Representation Expressed in Terms of the Triada of Malevich’s Squares

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We map the density matrix of the qubit (spin-1/2) state associated with the Bloch sphere and given in the tomographic probability representation onto vertices of a triangle determining Triada of Malevich’s squares. The three triangle vertices are located on three sides of another equilateral triangle with the sides equal to\( \sqrt{2} \). We demonstrate that the triangle vertices are in one-to-one correspondence with the points inside the Bloch sphere and show that the uncertainty relation for the three probabilities of spin projections +1/2 onto three orthogonal directions has the bound determined by the triangle area introduced. This bound is related to the sum of three Malevich’s square areas where the squares have sides coinciding with the sides of the triangle. We express any evolution of the qubit state as the motion of the three vertices of the triangle introduced and interpret the gates of qubit states as the semigroup symmetry of the Triada of Malevich’s squares. In view of the dynamical semigroup of the qubit-state evolution, we constructed nonlinear representation of the group U(2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Schrödinger, Naturwiss., Bd. 14, s. 664 (1926).

  2. L. D. Landau, Z. Phys., 45, 430 (1927).

    Article  ADS  Google Scholar 

  3. J. von Neumann, Mathematische Grundlagen der Quantenmechanik, Springer, Berlin (1932).

    MATH  Google Scholar 

  4. W. Pauli, “Zur Quantenmechanik des Magnetischen Elektrons,” Z. Phys., 43, Nos. 9–10, 601–623 (1927).

    Article  ADS  MATH  Google Scholar 

  5. V. V. Dodonov and V. I. Man’ko, Phys. Lett. A, 229, 335 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  6. V. I. Man’ko and O. V. Man’ko, J. Exp. Theor. Phys., 85, 430 (1997).

    Article  ADS  Google Scholar 

  7. S. Weigert, Phys. Rev. Lett., 84, 802 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  8. J.-P. Amiet and S. Weigert, J. Opt. B: Quantum Semiclass. Opt., 1, L5 (1999).

    Article  ADS  Google Scholar 

  9. G. M. D’Ariano, L. Maccone, and M. Paini, J. Opt. B: Quantum Semiclass. Opt., 5, 77 (2003).

    Article  ADS  Google Scholar 

  10. O. V. Man’ko, in: B. Gruber and M. Ramek (Eds.), Proceedings of International Conference “Symmetries in Science X” (Bregenz, Austria, 1997), Plenum Press, New York (1998), p. 207.

    Google Scholar 

  11. S. N. Filippov and V. I. Man’ko, J. Russ. Laser Res., 31, 32 (2010).

    Article  Google Scholar 

  12. O. Castanos, R. Lopes-Pena, M. A. Man’ko, and V. I. Man’ko, J. Phys. A: Math. Gen., 36, 4677 (2003).

    Article  ADS  Google Scholar 

  13. A. B. Klimov, O. V. Man’ko, V. I. Man’ko, et al., J. Phys. A: Math. Gen., 35, 6101 (2002).

    Article  ADS  Google Scholar 

  14. O. V. Man’ko, in: Proceedings of Wigner Centennial Conference (Pecs, Hungary, 2002), The Official Electronic Proceedings, paper 30; Acta Physica Hungarica A, Series Heavy Ion Physics, 19/3-4, 313 (2004).

  15. V. I. Man’ko, G. Marmo, F. Ventriglia, and P. Vitale, ”Metric on the space of quantum states from relative entropy. Tomographic reconstruction” arXiv:1612.07986 (2016).

  16. Y. Shalibo, R. Resh, O. Fogel, et al., Phys. Rev. Lett., 110, 100404 (2013).

    Article  ADS  Google Scholar 

  17. M. H. Devoret and R. J. Schoelkopf, Superconducting Circuits for Quantum Information: An Outlook, Science, 339, 1169 (2013).

    Article  ADS  Google Scholar 

  18. Y. A. Pashkin, T. Yamamoto, O. Astafiev, et al., Nature, 421, 823 (2003).

    Article  ADS  Google Scholar 

  19. A. Averkin, A. Karpov, K. Shulga, et al., Rev. Sci. Instrum., 85, 104702 (2014).

    Article  ADS  Google Scholar 

  20. O. V. Man’ko, V. I. Man’ko, and G. Marmo, Phys. Scr., 62, 446 (2000).

    Article  ADS  Google Scholar 

  21. R. L. Stratonovich, J. Exp. Theor. Phys., 5, 1206 (1957).

    MathSciNet  Google Scholar 

  22. O. V. Man’ko, V. I. Man’ko, and G. Marmo, J. Phys. A: Math. Gen., 35, 699 (2002).

    Article  ADS  Google Scholar 

  23. O. V. Man’ko, V. I. Man’ko, G. Marmo, and P. Vitale, Phys. Lett. A, 360, 522 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  24. F. Lizzi and P. Vitale, SIGMA, 10, 36 (2014).

    Google Scholar 

  25. A. Ibort, V. I. Man’ko, G. Marmo, et al., Phys. Scr., 79, 065013 (2009).

    Article  ADS  Google Scholar 

  26. M. Asorey, A. Ibort, G. Marmo, and F. Ventriglia, Phys. Scr., 90, 074031 (2015).

    Article  ADS  Google Scholar 

  27. Aleksandra Shatskikh, Black Square: Malevich and the Origin of Suprematism, Yale University Press, New Haven (2012).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga V. Man’ko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernega, V.N., Man’ko, O.V. & Man’ko, V.I. Triangle Geometry of the Qubit State in the Probability Representation Expressed in Terms of the Triada of Malevich’s Squares. J Russ Laser Res 38, 141–149 (2017). https://doi.org/10.1007/s10946-017-9628-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-017-9628-6

Keywords

Navigation