Skip to main content
Log in

Preparation of porous silica microspheres using silica nanoparticles with different morphologies and their properties as catalyst carriers

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The application of porous silica microspheres in the field of materials has made a breakthrough because of its unique properties. Nevertheless, owing to the limitation of technology, there was no simple and inexpensive method to industrialize porous silica microspheres which could be adjusted pore size and pore size distribution. In this paper, porous silica microspheres were prepared using silica nanoparticles with different morphologies and particle sizes as silica sources by the polymerization-induced colloid aggregation (PICA) method. The particle size, morphology, porosity, and thermal stability of the porous silica microspheres were analyzed by optical microscopy, field emission scanning electron microscopy (SEM), nitrogen adsorption analysis, and thermogravimetric analyzer (TGA). The results showed that the porous silica microspheres prepared with branched-chain silica nanoparticles as the silica source had an extensive pore size distribution and many macro- and mesoporous structures. By changing the size and morphology of silica nanoparticles, it reached the purpose of regulating pore size and pore size distribution of porous silica microspheres. The porous silica microspheres were loaded with copper catalyst and subjected to furfural hydrogenation reaction. The results showed that the catalytic effect of the porous silica microspheres prepared with branched-chain silica as the carrier was suitable, and the catalytic efficiency was 85% when the mass ratio of urea-formaldehyde resin to silica was 1/2. It was 1.28–2.57 times higher than that of other microspheres-loaded catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. N. Pal, E. Cho, D. Kim, Synthesis of ordered mesoporous silica/ceria–silica composites and their high catalytic performance for solvent-free oxidation of benzyl alcohol at room temperature. RSC Adv. 4(18), 9213–9222 (2014). https://doi.org/10.1039/c3ra47464j

    Article  ADS  CAS  Google Scholar 

  2. S.H. H, T. Li, T. Shoinkorova, S. Komaty, A. Ramirez, I. Mukhambetov, T. Li, E. Abou-Hamad, G. Shterk, S. Telalovic, A. Dikhtiarenko, B. Sirks, P. Lavrik, X.Q. Tang, B.M. Weckhuysen, P.C.A. Bruijnicx, J. Gascon, J. Ruiz-Martinez, Origin of active sites on silica-magnesia catalysts and control of reactive environment in the one-step ethanol-to-butadiene process. Nat. Catal. 6, 363–376 (2023). https://doi.org/10.1038/s41929-023-00945-0

    Article  CAS  Google Scholar 

  3. Y. Wang, J.Y. Liu, P. Wang, C.J. Werth, T.J. Stratehmann, Palladium nanoparticles encapsulated in Core-Shell silica: a structured Hydrogenation Catalyst with enhanced activity for reduction of Oxyanion Water Pollutants. ACS Catal. 4(10), 3551–3559 (2014). https://doi.org/10.1021/cs500971r

    Article  CAS  Google Scholar 

  4. P. Cao, L. Lin, H.F. Qi, R. Chen, Z.J. Wu, N. Li, T. Zhang, W.H. Luo, Zeolite-Encapsulated Cu Nanoparticles for the selective hydrogenation of Furfural to Furfuryl Alcohol. ACS Catal. 11(16), 10246–10256 (2021). https://doi.org/10.1021/acscatal.1c02658

    Article  CAS  Google Scholar 

  5. Y.H. Li, N. Li, W. Pan, Z.G. Yu, L.M. Yang, B. Tang, Hollow mesoporous silica nanoparticles with tunable structures for controlled drug delivery. ACS Appl. Mater. Interfaces. 9(3), 2123–2129 (2017). https://doi.org/10.1021/acsami.6b13876

    Article  CAS  PubMed  Google Scholar 

  6. R. Juthani, B. Madajewski, B. Yoo, L. Zhang, P.M. Chen, F. Chen, M.Z. Turker, K. Ma, M. Overholtzer, V.A. Longo, S. Carlin, V. Aragon-Sanabria, J. Huse, P. Zanzonico, C.M. Rudin, U. Wiesner, M.S. Bradbury, Ultrasmall core-shell silica nanoparticles for precision drug delivery in a high-grade malignant brain tumor model. Clin. Cancer Res. 26(1), 147–158 (2020). https://doi.org/10.1158/1078-0432.ccr-19-1834

    Article  CAS  PubMed  Google Scholar 

  7. R.P. Morais, S. Hochheim, C.C. de Oliveira, I.C. Riegel-Vidotti, C.E.B. Marino, Skin interaction, permeation, and toxicity of silica nanoparticles: Challenges and recent therapeutic and cosmetic advances. Int. J. Pharm. 614, 121439 (2022). https://doi.org/10.1016/j.ijpharm.2021.121439

    Article  CAS  PubMed  Google Scholar 

  8. H.H. Ma, J.Q. Wang, W.P. Zhang, C. Guo, Synthesis of phenylalanine and leucine dipeptide functionalized silica-based nanoporous material as a safe UV filter for sunscreen. J. Sol-Gel Sci. Technol. 97, 466–478 (2021). https://doi.org/10.1007/s10971-020-05417-6

    Article  CAS  Google Scholar 

  9. S.H. Tolbert, P.D. McFadden, D.A. Loy, New Hybrid Organic/Inorganic polysilsesquioxane – silica particles as Sunscreens. ACS Appl. Mater. Interfaces. 8(5), 3160–3174 (2016). https://doi.org/10.1021/acsami.5b10472

    Article  CAS  PubMed  Google Scholar 

  10. B. Yu, K. Ai, L.H. Lu, Dual-protective nano-sunscreen enables high-efficient elimination of the self-derived hazards. Appl. Mater. Today. 18, 100493 (2020). https://doi.org/10.1016/j.apmt.2019.100493

    Article  Google Scholar 

  11. X. Du, J.H. He, Spherical silica micro/nanomaterials with hierarchical structures: synthesis and applications. Nanoscale. 3(10), 3984–4002 (2011). https://doi.org/10.1039/c1nr10660k

    Article  ADS  CAS  PubMed  Google Scholar 

  12. L. Zhao, J.G. Yu, R. Guo, B. Cheng, Preparation and formation mechanisms of monodispersed mesoporous SiO2 microspheres by the PICA method. Key Eng. Mater. 280, 1153–1156 (2005). https://doi.org/10.4028/www.scientific.net/KEM.280-285.1153

    Article  Google Scholar 

  13. S.Y. Dai, Synthesis of Silica Microspheres and Their Application in Supporting Titanosilicate Zeolite. Patent, Dalian University of Technology. (2010)

  14. R.K. Iler, J.J. Kirkland, Microspheroids and a Process for Their Manufacture: US Patent, 4070286. (1978)

  15. N.D. Danielson, J.J. Kirkland, Synthesis and characterization of 2 µm wide-pore silica microspheres as Column Packings for the reversed-phase liquid chromatography of peptides and proteins. Anal. Chem. 59(20), 2501–2508 (1987). https://doi.org/10.1021/ac00147a013

    Article  CAS  Google Scholar 

  16. Q.H. Zhang, Y.K. Zhang, T. Li, The invention relates to a method for preparing high purity silica gel microspheres for high performance liquid chromatography. China: 1357760A. 2002–07010

  17. D. Wang, Preparation and pore Structure of Spherical Silica gel. Beijing University of Chemical Technology. (2008)

  18. C.I. Lee, S.W. Lee, Y. Lee, Y.H. Chang, Y.M. Hahm, Preparation and characterization of Mesoporous silica spheres by polymerization Induced Colloid Aggregation Method. Stud. Surf. Sci. Catal. 146, 193–196 (2003). https://doi.org/10.1016/S0167-2991(03)80360-9

    Article  CAS  Google Scholar 

  19. X.H. Yang, G.P. Wan, S.J. Ma, H.J. Xia, J. Wang, J.W. Liu, Y.N. Liu, G. Chen, Q. Bai, Synthesis and optimization of SiO2@SiO2 core-cell microspheres by an improved polymerization-induced colloid aggregation method for fast separation of small solutes and proteins. Talanta. 207, 120310 (2020). https://doi.org/10.1016/j.talanta.2019.120310

    Article  CAS  PubMed  Google Scholar 

  20. B.B. Zhao, Y. Zhang, T. Tang, F.Y. Wang, T. Li, Q. Lu, Preparation of high-purity monodisperse silica microspheres by the sol-gel method coupled with polymerization-induced colloid aggregation. Particuology. 22, 177–184 (2015). https://doi.org/10.1016/j.partic.2014.08.005

    Article  CAS  Google Scholar 

  21. C. Xu, E. Paone, D. Rodriguez-Padron, R. Luque, F. Mauriello, Recent Catalytic Routes for the Preparation and the upgrading of Biomass Derived Furfural and 5-Hydroxymethylfurfural. Chem. Soc. Rev. 49(13), 4273–4306 (2020). https://doi.org/10.1039/d0cs00041h

    Article  CAS  PubMed  Google Scholar 

  22. K. Dalvand, J. Rubin, S. Gunukula, M.C. Wheeler, G. Hunt, Economics of biofuels: market potential of furfural and its derivatives. Biomass Bioenerg. 115, 56–63 (2018). https://doi.org/10.1016/j.biombioe.2018.04.005

    Article  Google Scholar 

  23. J.-P. Lange, E. van der Heide, J. van Buijtenen, R. Price, Furfural-A promising platform for lignocellulosic biofuels. ChemSusChem. 5(1), 150–166 (2012). https://doi.org/10.1002/cssc.201100648

    Article  CAS  PubMed  Google Scholar 

  24. Y. Nakagawa, M. Tamura, K. Tomishige, Catalytic reduction of biomass-derived furanic compounds with hydrogen. ACS Catal. 3(12), 2655–2668 (2013). https://doi.org/10.1021/cs400616p

    Article  CAS  Google Scholar 

  25. M.M. Villaverde, N.M. Garetto, T.F. Garetto, A.J. Marchi, Selective liquid-phase hydrogenation of furfural to furfuryl alcohol over Cu-based catalysts. Catal. Today. 213, 87–92 (2013). https://doi.org/10.1016/j.cattod.2013.02.031

    Article  CAS  Google Scholar 

  26. H. Du, X.Y. Ma, P.F. Yan, M. Jiang, Z. Zhao, Z.C. Zhang, Catalytic furfural hydrogenation to furfuryl alcohol over Cu/SiO2 catalysts: A comparative study of the preparation methods. Fuel Process. Technol. 193, 221–231 (2019). https://doi.org/10.1016/j.fuproc.2019.05.003

    Article  CAS  Google Scholar 

  27. Y. Zengin, B. Kaya, M.S. Boroglu, I. Boz, Macrowave-assisted facile sol-gel synthesis of WO3-based silica catalysts for enhanced activity in glycerol dehydration. Ind. Eng. Chem. Res. 62, 1852–1864 (2023). https://doi.org/10.1021/acs.iecr.2c03856

    Article  CAS  Google Scholar 

  28. H. Ebrahimnezhad-Khaljiri, R. Eslami-Farsani, S.A. Chirani, Microcapsulated expoxy resin with nanosilica-urea formaldehyde composite shell. Appl. Polym. Sci. 137, 48580 (2019). https://doi.org/10.1002/APP.48580

    Article  Google Scholar 

  29. S.H. Liu, N. Govindarajan, K. Chan, Understanding activity trends in furfural hydrogenation on transition metal surface. ACS Catal. 12, 12902–12910 (2022). https://doi.org/10.1021/acscatal.2c03822

    Article  CAS  Google Scholar 

Download references

Funding

The research leading to these results received funding from the National Natural Science Foundation of China under Grant Agreement No. 51873079.

Author information

Authors and Affiliations

Authors

Contributions

CXM wrote the main manuscript test. JH and ZHZ prepared figures and tables. CXW did the characterization of the samples. DWG, CSL and XL amended the manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Xue Li.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C., Hu, J., Zong, Z. et al. Preparation of porous silica microspheres using silica nanoparticles with different morphologies and their properties as catalyst carriers. J Porous Mater 31, 377–390 (2024). https://doi.org/10.1007/s10934-023-01522-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-023-01522-3

Keywords

Navigation