Skip to main content
Log in

Nanoporous AlSBA-15 catalysed Claisen–Schmidt condensation for the synthesis of novel and biologically active chalcones

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Mesoporous AlSBA-15 catalysts (nSi/nAl ratios of 41, 129 and 210) were synthesized by sol–gel method. These materials were characterized by XRD, N2 sorption, FTIR, TPD-NH3, FESEM, EDX, and TEM analysis. XRD analysis of AlSBA-15 catalysts confirmed the existence of well-ordered crystalline structure having p6mm symmetry. N2 sorption isotherm of AlSBA-15 catalysts showed a type IV adsorption isotherm with H1 hysteresis loops. SEM analysis of AlSBA-15 (41) indicated worm-like particle morphology with a size range of 3 μm with co-occurrence of smaller particles of size ca. 1 μm. TEM analysis of AlSBA-15 (41) showed existence of uniform array of tubular nano-channels. The catalytic application of AlSBA-15 catalysts was tested on industrially important chalcones synthesis via Claisen–Schmidt condensation reaction in environment friendly approach. The reaction parameters such as time, temperature, nSi/nAl ratio, catalyst amount, and catalyst stability were investigated. AlSBA-15 (41) catalyst showed an excellent catalytic performance with 98% 1-tetralone conversion with 100% selectivity of compound 1c (91% yield) within 120 min AlSBA-15 (129) and AlSBA-15 (210) catalysts. The anti-oxidant activity of the synthesised chalcones were investigated by various in-vitro procedures, including radical scavenging potentials-1, 1-diphenyl-2-picryl-hydrazil, hydrogen peroxide scavenging, and ferric reducing potential assay. The new chalcone derivatives synthesised in this work showed a very good antioxidant activity and some were found to be more active than the parent chalcones, (E)-3-(4-hydroxy-3-methoxyphenyl)-1-phenylprop-2-en-1-one (compound 8c), and standard antioxidant (curcumin).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 3
Scheme 4
Fig. 8

Similar content being viewed by others

References

  1. B.M. Choudary, M.L. Kantam, C.R. Reddy, K.K. Rao, F. Figueras, J. Mol. Catal. A 146, 279 (1999)

    Article  CAS  Google Scholar 

  2. P. Anand, A.B. Kunnumakkara, R.A. Newman, B.B. Aggarwal, Mol. Pharm. 4, 807 (2007)

    Article  CAS  Google Scholar 

  3. S. Raghavan, P. Manogaran, B.K. Kuppuswami, G. Venkatraman, K.K. Narasimha, Med. Chem. Res. 24, 4157 (2015)

    Article  CAS  Google Scholar 

  4. M.S. Alam, S.M. Rahman, D.U. Lee, Chem. Pap. 69, 1118 (2015)

    Article  CAS  Google Scholar 

  5. R. Kalirajan, S.U. Sivakumar, S. Jubie, B. Gowramma, B. Suresh, Int. J. Chemtech. Res. 1, 27 (2009)

    CAS  Google Scholar 

  6. A.U. Rahman, Amsterdam: Elsevier publishers (2005).

    Google Scholar 

  7. M.R. Ahmad, V.G. Sastry, N. Bano, S. Anwar, Arab. J. Chem. 9, S931 (2016)

    Article  Google Scholar 

  8. T.H. Bui, N.T. Nguyen, P.H. Dang, H.X. Nguyen, M.T. Nguyen, SpringerPlus 5, 1789 (2016)

    Article  Google Scholar 

  9. M.Z. Gibson, M.A. Nguyen, S.K. Zingales, J. Med. Chem. 14, 333 (2018)

    Article  CAS  Google Scholar 

  10. B.T. Kim, J.C. Chun, K.J. Hwang, Bull. Korean Chem. Soc. 29, 1125 (2008)

    Article  CAS  Google Scholar 

  11. T. Venkatesh, Y.D. Bodke, R. Kenchappa, S. Telkar, J. Med. Chem. 6, 440 (2016)

    Google Scholar 

  12. T.A. Geissman, R.O. Clinton, J. Am. Chem. Soc. 68, 697 (1946)

    Article  CAS  Google Scholar 

  13. S. Paul, R. Gupta, Indian J. Chem. Technol. 5, 263 (1998)

    CAS  Google Scholar 

  14. A. Russell, S.F. Clark, J. Am. Chem. Soc. 61, 2651 (1939)

    Article  CAS  Google Scholar 

  15. M.E. Zwaagstra, H. Timmerman, M. Tamura, T. Tohma, Y. Wada, K. Onogi, M.Q. Zhang, J. Med. Chem. 40, 1075 (1997)

    Article  CAS  Google Scholar 

  16. D.S. Breslow, C.R. Hauser, J. Am. Chem. Soc. 62, 2385 (1940)

    Article  CAS  Google Scholar 

  17. G. Chandrasekar, M. Hartmann, V. Murugesan, J. Nanosci. Nanotechnol. 14, 4683 (2014)

    Article  CAS  Google Scholar 

  18. G. Chandrasekar, M. Hartmann, M. Palanichamy, V. Murugesan, Catal. Commun. 8, 457 (2007)

    Article  CAS  Google Scholar 

  19. B.J. Melde, B.J. Johnson, P.T. Charles, Sensors 8, 5202 (2008)

    Article  CAS  Google Scholar 

  20. X. An, J. Zhao, F. Cui, G. Qu, Arab. J. Chem. 10, S1781 (2017)

    Article  CAS  Google Scholar 

  21. Y. Fan, Q. Si, Y. Liu, X. Wang, H. Liu, M. Xie, Anal. Sci. 33, 493 (2017)

    Article  Google Scholar 

  22. S.C. Gupta, S. Prasad, J.H. Kim, S. Patchva, L.J. Webb, I.K. Priyadarsini, B.B. Aggarwal, Nat. Prod. Rep. 28, 1937 (2011)

    Article  CAS  Google Scholar 

  23. B.M. Liu, J. Zhang, A.J. Hao, L. Xu, D. Wang, H. Ji, S.J. Sun, B.Q. Chen, B. Liu, Spectrochim. Acta A 155, 88 (2016)

    Article  CAS  Google Scholar 

  24. A. Murugesan, R.M. Gengan, R. Rajamanikandan, M. Ilanchelian, C.H. Lin, Syn. Commun. 47, 1884 (2017)

    Article  CAS  Google Scholar 

  25. K.M. Naik, S.T. Nandibewoor, J. Lumin. 143, 484 (2013)

    Article  CAS  Google Scholar 

  26. T. Tronina, P. Strugała, J. Popłoński, A. Włoch, S. Sordon, A. Bartmańska, E. Huszcza, Molecules 22, 1230 (2017)

    Article  Google Scholar 

  27. S.Z.-Jahromi, H.M-Torshizi, J. Biomol. Struct. Dyn. 36, 1329 (2018).

    Article  Google Scholar 

  28. T. Ak, İ. Gülçin, Chem. Biol. Interact. 174, 27 (2008)

    Article  CAS  Google Scholar 

  29. S.K. Borra, P. Gurumurthy, J. Mahendra, J. Med. Plants Res. 7, 2680 (2013)

    CAS  Google Scholar 

  30. P. Poprac, K. Jomova, M. Simunkova, V. Kollar, C.J. Rhodes, M. Valko, Trends Pharmacol Sci. 38, 592 (2017)

    Article  CAS  Google Scholar 

  31. E. Bendary, R.R. Francis, H.M. Ali, M.I. Sarwat, S. El Hady, Ann. Agric. Sci. 58, 173 (2013)

    Article  Google Scholar 

  32. N.M. Hamada, N.Y. Abdo, Molecules 20, 10468 (2015)

    Article  CAS  Google Scholar 

  33. M.G.-Cazalilla, J.M.M.-Robles, A. Gurbani, E.R.-Castellón, A.J.-López, J. Solid State Chem. 180, 1130 (2007).

    Article  Google Scholar 

  34. P. Elamathi, M.K. Kolli, G. Chandrasekar, Int. J. Nanosci. 17, 1760010 (2018)

    Article  Google Scholar 

  35. P. Elamathi, G. Chandrasekar, Catal. Lett. 148, 1758 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

One of the authors (G. Chandrasekar) is grateful to the Deanship of Scientific Research of Imam Abdulrahman Bin Faisal University for the financial support under the project (2019-036-Sci).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Govindasamy Chandrasekar or M.M. Balamurali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4727 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elamathi, P., Chandrasekar, G. & Balamurali, M. Nanoporous AlSBA-15 catalysed Claisen–Schmidt condensation for the synthesis of novel and biologically active chalcones. J Porous Mater 27, 817–829 (2020). https://doi.org/10.1007/s10934-019-00854-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-019-00854-3

Keywords

Navigation