Skip to main content
Log in

Facile synthesis of hydrothermally stable mesoporous ZSM-5 zeolite from Al- SBA-16 via steam assisted crystallization

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

In this work, Al grafted SBA-16 (Al-SBA-16) is converted into a fully crystalline hierarchical mesoporous ZSM-5 zeolite with hydrothermal stability by steam assisted crystallization under controlled conditions. The secondary mesoporosity is due to reorganization and recrystallization events happening upon steaming the precursor. Two mesoporous aluminosilicates (Al-SBA-16s) are used as the precursors of zeolites. The precursors are obtained by post-synthetic Al grafting on the silica walls of SBA-16 with aluminium isopropoxide and sodium aluminate. Mesoporous ZSM-5 zeolites obtained from the Al-SBA-16 precursors and commercial ZSM-5 are characterized using XRD, XRF, FT-IR, TEM, N2 adsorption, 27Al and 29Si MAS NMR, and TPD of NH3. The results indicated the presence of intraparticle mesoporosity in the prepared mesoporous zeolites and they have comparable crystallinity with commercial ZSM-5. Catalytic activity of the synthesized mesoporous zeolites in benzylation of mesitylene is found to be comparatively more than commercial ZSM-5, which shows existence of micro/meso hierarchical structure in the mesoporous ZSM-5 zeolites. The aluminium sources, aluminium isopropoxide and sodium aluminate have a remarkable influence on the textural, acidity, and hydrothermal stability characteristics of the synthesized mesoporous ZSM-5 zeolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Hartmann, A.G. Machoke, W. Schwieger, Catalytic test reactions for the evaluation of hierarchical zeolites. Chem. Soc. Rev. 45, 3313–3330 (2016)

    PubMed  CAS  Google Scholar 

  2. X.H. Vu, T.T. Truong, U. Armbruster, Enhanced cracking of bulky hydrocarbons over hierarchical ZSM-5 materials: a comparative study. J. Porous Mater. 26, 175–184 (2019)

    CAS  Google Scholar 

  3. M.S. Holm, E. Taarning, K. Egeblad, C.H. Christensen, Catalysis with hierarchical zeolites. Catal. Today 168, 3–16 (2011)

    CAS  Google Scholar 

  4. M.E. Davis, Ordered porous materials for emerging applications. Nature. 417, 813 (2002)

    PubMed  CAS  Google Scholar 

  5. V. Valtchev, M. Smaihi, A.C. Faust, L. Vidal, Biomineral-silica-induced zeolitization of Equisetum Arvense. Angew. Chem. Int. Ed. 42, 2782–2785 (2003)

    CAS  Google Scholar 

  6. M. Hartmann, Hierarchical zeolites: a proven strategy to combine shape selectivity with efficient mass transport. Angew. Chem. Int. Ed. 43, 5880–5882 (2004)

    CAS  Google Scholar 

  7. C.M.A. Parlett, K. Wilson, A.F. Lee, Hierarchical porous materials: catalytic applications. Chem. Soc. Rev. 42, 3876–3893 (2013)

    CAS  Google Scholar 

  8. L.-H. Chen, X.-Y. Li, J.C. Rooke, Y.-H. Zhang, X.-Y. Yang, Y. Tang, F.-S. Xiao, B.-L. Su, Hierarchically structured zeolites: synthesis, mass transport properties and applications. J. Mater. Chem. 22, 17381–17403 (2012)

    CAS  Google Scholar 

  9. S. Lopez-Orozco, A. Inayat, A. Schwab, T. Selvam, W. Schwieger, Zeolitic materials with hierarchical porous structures. Adv. Mater. 23, 2602–2615 (2011)

    PubMed  CAS  Google Scholar 

  10. I.I. Ivanova, E.E. Knyazeva, Micro-mesoporous materials obtained by zeolite recrystallization: synthesis, characterization and catalytic applications. Chem. Soc. Rev. 42, 3671–3688 (2013)

    PubMed  CAS  Google Scholar 

  11. H. Liu, Z. Diao, G. Liu, L. Wang, X. Zhang, Catalytic cracking of n-dodecane over hierarchical HZSM-5 zeolites synthesized by double-template method. J. Porous Mater. 24, 1679–1687 (2017)

    CAS  Google Scholar 

  12. D.P. Serrano, J.M. Escola, P. Pizarro, Synthesis strategies in the search for hierarchical zeolites. Chem. Soc. Rev. 42, 4004–4035 (2013)

    PubMed  CAS  Google Scholar 

  13. K. Egeblad, C.H. Christensen, M. Kustova, C.H. Christensen, Templating mesoporous zeolites. Chem. Mater. 20, 946–960 (2008)

    CAS  Google Scholar 

  14. R. Chal, C. Gérardin, M. Bulut, S. van Donk, Overview and industrial assessment of synthesis strategies towards zeolites with mesopores. ChemCatChem. 3, 67–81 (2011)

    CAS  Google Scholar 

  15. Q. Shen, L. Zhang, M. Wu, C. He, W. Wei, N. Sun, Y. Sun, Postsynthesis of mesoporous ZSM-5 zeolites with TPAOH-assisted desilication and determination of activity performance in N2O decomposition. J. Porous Mater. 24, 759–767 (2017)

    CAS  Google Scholar 

  16. H. Sun, P. Peng, Y. Wang, C. Li, F. Subhan, P. Bai, W. Xing, Z. Zhang, Z. Liu, Z. Yan, Preparation, scale-up and application of meso-ZSM-5 zeolite by sequential desilication–dealumination. J. Porous Mater. 24, 1513–1525 (2017)

    CAS  Google Scholar 

  17. R. Feng, X. Yan, X. Hu, Y. Wang, Z. Li, K. Hou, J. Lin, Hierarchical ZSM-5 zeolite designed by combining desilication and dealumination with related study of n-heptane cracking performance. J. Porous Mater. 25, 1743–1756 (2018)

    CAS  Google Scholar 

  18. C. Liu, Q. Wu, J. Peng, C. Qi, F. Liu, Mesostructure controllable ZSM-5 single crystals supported Pd/transition metal oxides: efficient and reusable catalysts for selective oxidation under aerobic conditions. J. Porous Mater. 24, 297–303 (2017)

    CAS  Google Scholar 

  19. K. Li, J. Valla, J. Garcia-Martinez, Realizing the commercial potential of hierarchical zeolites: new opportunities in catalytic cracking. ChemCatChem. 6, 46–66 (2014)

    CAS  Google Scholar 

  20. D. Verboekend, J. Pérez-Ramírez, Design of hierarchical zeolite catalysts by desilication. Catal. Sci. Technol. 1, 879–890 (2011)

    CAS  Google Scholar 

  21. D. Verboekend, S. Mitchell, M. Milina, J.C. Groen, J. Pérez-Ramírez, Full compositional flexibility in the preparation of mesoporous MFI zeolites by desilication. J. Phys. Chem. C 115, 14193–14203 (2011)

    CAS  Google Scholar 

  22. D. Verboekend, A.M. Chabaneix, K. Thomas, J.-P. Gilson, J. Perez-Ramirez, Mesoporous ZSM-22 zeolite obtained by desilication: peculiarities associated with crystal morphology and aluminium distribution. CrystEngComm. 13, 3408–3416 (2011)

    CAS  Google Scholar 

  23. P. Sazama, B. Wichterlova, J. Dedecek, Z. Tvaruzkova, Z. Musilova, L. Palumbo, S. Sklenak, O. Gonsiorova, FTIR and 27Al MAS NMR analysis of the effect of framework Al- and Si-defects in micro- and micro-mesoporous H-ZSM-5 on conversion of methanol to hydrocarbons. Microporous Mesoporous Mater. 143, 87–96 (2011)

    CAS  Google Scholar 

  24. D. Verboekend, L.A. Villaescusa, K. Thomas, I. Stan, J. Pérez-Ramírez, Acidity and accessibility studies on mesoporous ITQ-4 zeolite. Catal. Today 152, 11–16 (2010)

    CAS  Google Scholar 

  25. S. Svelle, L. Sommer, K. Barbera, P.N.R. Vennestrøm, U. Olsbye, K.P. Lillerud, S. Bordiga, Y.-H. Pan, P. Beato, How defects and crystal morphology control the effects of desilication. Catal. Today 168, 38–47 (2011)

    CAS  Google Scholar 

  26. D. Verboekend, R. Caicedo-Realpe, A. Bonilla, M. Santiago, J. Pérez-Ramírez, Properties and functions of hierarchical ferrierite zeolites obtained by sequential post-synthesis treatments. Chem. Mater. 22, 4679–4689 (2010)

    CAS  Google Scholar 

  27. Q. Huang, H. Vinh-Thang, A. Malekian, M. Eić, D. Trong-On, S. Kaliaguine, Adsorption of n-heptane, toluene and o-xylene on mesoporous UL-ZSM5 materials. Microporous Mesoporous Mater. 87, 224–234 (2006)

    CAS  Google Scholar 

  28. S.-H. Jang, W.-S. Ahn, Phase transition of mesoporous SiO2 impregnated with an organic templating agent by post-synthetic microwave heating. J. Porous Mater. 15, 93–99 (2008)

    CAS  Google Scholar 

  29. S. Goergen, M.A. Saada, M. Soulard, L. Rouleau, J. Patarin, Dry gel conversion synthesis of shape controlled MFI type zeolite materials. J. Porous Mater. 17, 635–641 (2010)

    CAS  Google Scholar 

  30. M.B. Yue, L.B. Sun, T.T. Zhuang, X. Dong, Y. Chun, J.H. Zhu, Directly transforming as-synthesized MCM-41 to mesoporous MFI zeolite. J. Mater. Chem. 18, 2044–2050 (2008)

    CAS  Google Scholar 

  31. J. Zhou, Z. Hua, Z. Liu, W. Wu, Y. Zhu, J. Shi, Direct synthetic strategy of mesoporous ZSM-5 zeolites by using conventional block copolymer templates and the improved catalytic properties. ACS Catal. 1, 287–291 (2011)

    CAS  Google Scholar 

  32. J. Zhao, Z. Hua, Z. Liu, Y. Li, L. Guo, W. Bu, X. Cui, M. Ruan, H. Chen, J. Shi, Direct fabrication of mesoporous zeolite with a hollow capsular structure. Chem. Comm. (2009). https://doi.org/10.1039/B913920F

    Article  PubMed  Google Scholar 

  33. J. Zhou, Z. Hua, J. Shi, Q. He, L. Guo, M. Ruan, Synthesis of a hierarchical micro/mesoporous structure by steam-assisted post-crystallization. Chem. Eur. J. 15, 12949–12954 (2009)

    PubMed  CAS  Google Scholar 

  34. J. Zhou, Z. Hua, J. Zhao, Z. Gao, S. Zeng, J. Shi, A micro/mesoporous aluminosilicate: key factors affecting framework crystallization during steam-assisted synthesis and its catalytic property. J. Mater. Chem. 20, 6764–6771 (2010)

    CAS  Google Scholar 

  35. J. Zhou, Z. Hua, X. Cui, Z. Ye, F. Cui, J. Shi, Hierarchical mesoporous TS-1 zeolite: a highly active and extraordinarily stable catalyst for the selective oxidation of 2,3,6-trimethylphenol. Chem. Comm. 46, 4994–4996 (2010)

    PubMed  CAS  Google Scholar 

  36. Y. Li, J. Shi, Z. Hua, H. Chen, M. Ruan, D. Yan, Hollow spheres of mesoporous aluminosilicate with a three-dimensional pore network and extraordinarily high hydrothermal stability. Nano Lett. 3, 609–612 (2003)

    CAS  Google Scholar 

  37. T. Xue, H. Liu, Y. Zhang, H. Wu, P. Wu, M. He, Synthesis of ZSM-5 with hierarchical porosity: In-situ conversion of the mesoporous silica-alumina species to hierarchical zeolite. Microporous Mesoporous Mater. 242, 190–199 (2017)

    CAS  Google Scholar 

  38. M. Rilyanti, R.R. Mukti, G.T.M. Kadja, M. Ogura, H. Nur, E.-P. Ng, Ismunandar, On the drastic reduction of organic structure directing agent in the steam-assisted crystallization of zeolite with hierarchical porosity. Microporous Meoporous Mater. 230, 30–38 (2016)

    CAS  Google Scholar 

  39. J. Wang, W. Yue, W. Zhou, M.-O. Coppens, A tunable, hierarchically structured mesoporous zeolite composite. Microporous Mesoporous Mater. 120, 19–28 (2009)

    CAS  Google Scholar 

  40. G.T.M. Kadja, R.R. Mukti, Z. Liu, M. Rilyanti, I.N. Ismunandar, M. Marsih, T. Ogura, T. Wakihara, Okubo, Mesoporogen-free synthesis of hierarchically porous ZSM-5 below 100 °C. Microporous Mesoporous Mater. 226, 344–352 (2016)

    CAS  Google Scholar 

  41. A.G. Machoke, A.M. Beltrán, A. Inayat, B. Winter, T. Weissenberger, N. Kruse, R. Güttel, E. Spiecker, W. Schwieger, Micro/macroporous system: MFI-type zeolite crystals with embedded macropores. Adv. Mater. 27, 1066–1070 (2015)

    PubMed  CAS  Google Scholar 

  42. T. Weissenberger, B. Reiprich, A.G.F. Machoke, K. Klühspies, J. Bauer, R. Dotzel, J.L. Casci, W. Schwieger, Hierarchical MFI type zeolites with intracrystalline macropores: the effect of the macropore size on the deactivation behaviour in the MTO reaction. Catal. Sci. Technol. 9, 3259–3269 (2019)

    CAS  Google Scholar 

  43. X.-Y. Yang, G. Tian, L.-H. Chen, Y. Li, J.C. Rooke, Y.-X. Wei, Z.-M. Liu, Z. Deng, G. Van Tendeloo, B.-L. Su, Well-organized zeolite nanocrystal aggregates with interconnected hierarchically micro–meso–macropore systems showing enhanced catalytic performance. Chemistry 17, 14987–14995 (2011)

    PubMed  CAS  Google Scholar 

  44. Z. Luan, M. Hartmann, D. Zhao, W. Zhou, L. Kevan, Alumination and ion exchange of mesoporous SBA-15 molecular sieves. Chem. Mater. 11, 1621–1627 (1999)

    CAS  Google Scholar 

  45. M. Kamil, K. Manikandan, S. Elangovan, K. Cheralathan, Preparation and catalytic activity of mesoporous Al-SBA-16 solid acid catalysts. J. Indian Chem. Soc. 92, 721–723 (2015)

    CAS  Google Scholar 

  46. Y. Wang, Y. Sun, C. Lancelot, C. Lamonier, J.-C. Morin, B. Revel, L. Delevoye, A. Rives, Effect of post treatment on the local structure of hierarchical Beta prepared by desilication and the catalytic performance in Friedel–Crafts alkylation. Microporous Mesoporous Mater. 206, 42–51 (2015)

    CAS  Google Scholar 

  47. V. Meynen, P. Cool, E.F. Vansant, Verified syntheses of mesoporous materials. Microporous Mesoporous Mater. 125, 170–223 (2009)

    CAS  Google Scholar 

  48. Y. Wang, J. Song, N.C. Baxter, G.-T. Kuo, S. Wang, Synthesis of hierarchical ZSM-5 zeolites by solid-state crystallization and their catalytic properties. J. Catal. 349, 53–65 (2017)

    CAS  Google Scholar 

  49. J. Jiao, S. Altwasser, W. Wang, J. Weitkamp, M. Hunger, State of aluminum in dealuminated, nonhydrated zeolites Y investigated by multinuclear solid-state NMR spectroscopy. J. Phys. Chem. B 108, 14305–14310 (2004)

    CAS  Google Scholar 

  50. J. Klinowski, Nuclear magnetic resonance studies of zeolites. Prog. Nucl. Magn. Reson. Spectrosc. 16, 237–309 (1984)

    CAS  Google Scholar 

  51. R. Bertram, U. Lohse, W. Gessner, Zur Charakterisierung des Extragitter-Aluminiums in Y-Zeolithen mittels der Ferronmethode. ‎Z. Anorg. Allg. Chem. 567, 145–152 (1988)

    CAS  Google Scholar 

  52. Z. Luan, C.-F. Cheng, W. Zhou, J. Klinowski, Mesopore molecular sieve MCM-41 containing framework aluminum. J. Phys. Chem. 99, 1018–1024 (1995)

    CAS  Google Scholar 

  53. M. Matsukata, M. Ogura, T. Osaki, P.R. Hari Prasad Rao, M. Nomura, E. Kikuchi, Conversion of dry gel to microporous crystals in gas phase. Top. Catal. 9, 77–92 (1999)

    CAS  Google Scholar 

  54. T. Tatsumi, N. Jappar, Properties of Ti-Beta zeolites synthesized by dry-gel conversion and hydrothermal methods. J. Phy. Chem. B 102, 7126–7131 (1998)

    CAS  Google Scholar 

  55. P.S. Niphadkar, M.S. Kotwal, S.S. Deshpande, V.V. Bokade, P.N. Joshi, Tin-silicalite-1: synthesis by dry gel conversion, characterization and catalytic performance in phenol hydroxylation reaction. Mater. Chem. Phys. 114, 344–349 (2009)

    CAS  Google Scholar 

  56. K. Möller, B. Yilmaz, R.M. Jacubinas, U. Müller, T. Bein, One-step synthesis of hierarchical zeolite beta via network formation of uniform nanocrystals. J. Am. Chem. Soc. 133, 5284–5295 (2011)

    PubMed  Google Scholar 

  57. M.M. Treacy, J.B. Higgins, Collection of Simulated XRD Powder Patterns for Zeolites Fourth (4th) Edition (Elsevier, Amsterdam, 2001)

    Google Scholar 

  58. C. Xue, F. Zhang, L. Wu, D. Zhao, Vapor assisted “in situ” transformation of mesoporous carbon–silica composite for hierarchically porous zeolites. Microporous Mesoporous Mater. 151, 495–500 (2012)

    CAS  Google Scholar 

  59. J. Haw, D. Marcus, S. Auerbach, K. Carrado, P. Dutta, in Handbook of Zeolite Science and Technology, ed. by S.M. Auerbach, K.A. Carrado, P.K. Dutta (Marcel Dekker, New York, 2003)

    Google Scholar 

  60. C.T.W. Chu, C.D. Chang, Isomorphous substitution in zeolite frameworks. 1. Acidity of surface hydroxyls in [B]-, [Fe]-, [Ga]-, and [Al]-ZSM-5. J. Phy. Chem. 89, 1569–1571 (1985)

    CAS  Google Scholar 

  61. G.A.P.K. Wardhani, N. Nurlela, M. Azizah, Silica content and structure from corncob ash with various acid treatment (HCl, HBr, and Citric Acid). Molekul 12, 174–181 (2017)

    CAS  Google Scholar 

  62. A.W. Chester, E.G. Derouane, Zeolite Characterization and Catalysis: A Tutorial (Springer, New York, 2009)

    Google Scholar 

  63. J.J. Vijaya, L.J. Kennedy, G. Sekaran, K.S. Nagaraja, Synthesis, characterization and humidity sensing properties of Cu–Sr–Al mixed metal oxide composites. Mater. Res. Bull. 43, 473–482 (2008)

    CAS  Google Scholar 

  64. Y.-P. Guo, H.-J. Wang, Y.-J. Guo, L.-H. Guo, L.-F. Chu, C.-X. Guo, Fabrication and characterization of hierarchical ZSM-5 zeolites by using organosilanes as additives. Chem. Eng. J. 166, 391–400 (2011)

    CAS  Google Scholar 

  65. S. Narayanan, J.J. Vijaya, S. Sivasanker, C. Ragupathi, T.M. Sankaranarayanan, L.J. Kennedy, Hierarchical ZSM-5 catalytic performance evaluated in the selective oxidation of styrene to benzaldehyde using TBHP. J. Porous Mater. 23, 741–752 (2016)

    CAS  Google Scholar 

  66. P.A. Jacobs, E.G. Derouane, J. Weitkamp, Evidence for X-ray-amorphous zeolites. J. Chem. Soc. Chem. Comm. (1981). https://doi.org/10.1039/C39810000591

    Article  Google Scholar 

  67. J.C. Groen, L.A.A. Peffer, J. Pérez-Ramírez, Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mater. 60, 1–17 (2003)

    CAS  Google Scholar 

  68. Z. Li, M. Jaroniec, Synthesis and adsorption properties of colloid-imprinted carbons with surface and volume mesoporosity. Chem. Mater. 15, 1327–1333 (2003)

    CAS  Google Scholar 

  69. P.I. Ravikovitch, A.V. Neimark, Density functional theory of adsorption in spherical cavities and pore size characterization of templated nanoporous silicas with cubic and three-dimensional hexagonal structures. Langmuir 18, 1550–1560 (2002)

    CAS  Google Scholar 

  70. M. Kruk, M. Jaroniec, A. Sayari, Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements. Langmuir 13, 6267–6273 (1997)

    CAS  Google Scholar 

  71. M.S.M. Kamil, S.P. Elangovan, M. Ogura, K.K. Cheralathan, Crytallization of amorphous silica to silicalite-1: effect of nature of silica sources and tetrapropylammonium hydroxide concentration. Indian J. Chem. 54A, 469–477 (2015)

    CAS  Google Scholar 

  72. F. Schmidt, M.R. Lohe, B. Büchner, F. Giordanino, F. Bonino, S. Kaskel, Improved catalytic performance of hierarchical ZSM-5 synthesized by desilication with surfactants. Microporous Mesoporous Mater. 165, 148–157 (2013)

    CAS  Google Scholar 

  73. J. Klinowski, Solid-state NMR studies of molecular sieve catalysts. Chem. Rev. 91, 1459–1479 (1991)

    CAS  Google Scholar 

  74. X. Zhang, D. Liu, D. Xu, S. Asahina, K.A. Cychosz, K.V. Agrawal, Y. Al Wahedi, A. Bhan, S. Al Hashimi, O. Terasaki, M. Thommes, M. Tsapatsis, Synthesis of self-pillared zeolite nanosheets by repetitive branching. Science 336, 1684 (2012)

    PubMed  CAS  Google Scholar 

  75. H. Jin, M.B. Ansari, E.-Y. Jeong, S.-E. Park, Effect of mesoporosity on selective benzylation of aromatics with benzyl alcohol over mesoporous ZSM-5. J. Catal. 291, 55–62 (2012)

    CAS  Google Scholar 

  76. B. Li, Z. Hu, B. Kong, J. Wang, W. Li, Z. Sun, X. Qian, Y. Yang, W. Shen, H. Xu, D. Zhao, Hierarchically tetramodal-porous zeolite ZSM-5 monoliths with template-free-derived intracrystalline mesopores. Chem. Sci. 5, 1565–1573 (2014)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank VIT University for providing ‘VIT SEED GRANT’ for carrying out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Cheralathan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamil, M.S.M., Cheralathan, K.K. Facile synthesis of hydrothermally stable mesoporous ZSM-5 zeolite from Al- SBA-16 via steam assisted crystallization. J Porous Mater 27, 587–601 (2020). https://doi.org/10.1007/s10934-019-00839-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-019-00839-2

Keywords

Navigation