Skip to main content
Log in

Evaluation method for pore size distribution by using capillary liquid suction tests

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

In this paper, we introduce a method to evaluate pore size distribution using capillary absorption curves obtained by wicking methods. Its usefulness lies in its capacity to interpret experimental data by means of its reproduction, its capacity to predict them and its capacity to analyze work hypothesis. The theoretical basis for this study lies in the cylindrical capillaries model, to which two main considerations have been introduced: (a) the tortuosity, independent of pore volume, in which all the causes of the slowing down in liquid absorption with respect to the model are included, and (b) the influence of porous distributions, under the hypothesis that they adjust to simple mathematical functions. Numerous capillary absorption experiments were carried out and the data obtained from three of the tests, regarded as representative of the experiments developed, were reproduced by means of a simulation software in which the theoretical considerations described were implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BD:

Bulk density (kg m−3)

Kp :

Average permeability coefficient (m)

Ks :

Capillary coefficient (kg m−2 s−1/2)

L:

Sample thickness (m)

ms :

Normalized mass (kg m−2)

m *s :

Normalized mass for the whole porous structure (kg m−2)

m **s :

Normalized mass for pores of greater magnitude (kg m−2)

ni :

Pore number for pore i

r:

Pore average radius (m)

ri :

Pore i radius (m)

r0 :

Average pore size (m)

Sm :

Sample surface (m2)

Sp :

Porous surface (m2)

SS:

Specific surface (mkg−1)

t:

Time (s)

h:

Height (m)

V:

Volume (m3)

τ:

Tortuosity

ε* :

Effective porosity

ε:

Total porosity

γ:

Surface tension (N m−1)

μ:

Viscosity (kg m−1 s−1, Poise)

ρ:

Density (kg m−3)

θ:

Contact angle

References

  1. F. Andreola, C. Leonelly, M. Romagnoli, P. Miselli, Am. Ceram. Soc. Bull. 79, 49 (2000)

    CAS  Google Scholar 

  2. V. Beltrán, A. Escardino, C. Feliu, Ma.D. Rodrigo, Br. Ceram. Trans. J. 87, 64 (1988)

    Google Scholar 

  3. Z. Li, R.F. Giese, C.J. van Oss, H.M. Kerch, H.E. Burdette, J. Am. Ceram. Soc. 77, 2220 (1994). doi:10.1111/j.1151-2916.1994.tb07125.x

    Article  CAS  Google Scholar 

  4. J. Rouquerol, D. Avnir, C.W. Fairbridge, D.H. Everett, J.H. Haynes, N. Pernicone, J.D.F. Ramsay, K.S.W. Sing, K.K. Unger, Pure. Appl. Chem. 66, 1739 (1994). doi:10.1351/pac199466081739

    Article  CAS  Google Scholar 

  5. Y. Nishi, N. Iwashita, Y. Sawada, M. Inagaki, Water Res. 36, 5029 (2002). doi:10.1016/S0043-1354(02)00225-7

    Article  CAS  Google Scholar 

  6. W. Washburn, Phys. Rev. 17, 273 (1921). doi:10.1103/PhysRev.17.273

    Article  Google Scholar 

  7. V. Beltrán, A. Barba, Ma.D. Rodrigo, A. Escardino, Br. Ceram. Trans. J. 88, 219 (1989)

    Google Scholar 

  8. F.J. Navas, Theoretical and experimental study of the capillary absorption process. Ph.D. Thesis. Universidad de Cádiz, Spain [in Spanish], 2004

  9. T.B. Boving, P. Grathwohl, J. Contam. Hydrol. 53, 85 (2001). doi:10.1016/S0169-7722(01)00138-3

    Article  CAS  Google Scholar 

  10. J. Martín, F.J. Navas, J.J. Gallardo, Automated System and Procedure for the Study of Transport Properties of Fluids in Porous Materials. Patent P200403049, 22 December 2004 [in Spanish]

  11. F.J. Navas, J.J. Gallardo, M.C. Edreira, J. Martín, Rev. Sci. Instrum. 77, 065107 (2006). doi:10.1063/1.2210174

    Article  Google Scholar 

  12. A.K. Helmy, S.G. de Bussetti, E.A. Ferreiro, Appl. Surf. Sci. 253, 6878 (2007). doi:10.1016/j.apsusc.2007.01.127

    Article  CAS  Google Scholar 

  13. R.M. Pashley, J.A. Kitchner, J. Colloid Interface Sci. 71, 491 (1979). doi:10.1016/0021-9797(79)90323-0

    Article  CAS  Google Scholar 

  14. F.S. Baker, K.S.W. Sing, J. Colloid Interface Sci. 55, 605 (1976). doi:10.1016/0021-9797(76)90071-0

    Article  CAS  Google Scholar 

  15. T.H. Muster, C.A. Prestige, R.A. Hayes, Colloids Surf. A Physicochem. Eng. Asp. 176, 253 (2001). doi:10.1016/S0927-7757(00)00600-2

    Article  CAS  Google Scholar 

  16. A. Abbasian, S.R. Ghaffasian, N. Mohammadi, D. Falladi, Colloids Surf. A Physicochem. Eng. Asp. 236, 133 (2004). doi:10.1016/j.colsurfa.2004.01.028

    Article  CAS  Google Scholar 

  17. M. Raimondo, M. Dondi, D. Gardini, G. Guarini, F. Mazzanti, Construct. Build Mater. doi:10.1016/j.conbuildmat.2009.01.009

  18. M.A. Cinquepalmi, T. Mangialardi, L. Panei, A.E. Paolini, L.J. Piga, Hazard. Mater. 151, 585 (2008). doi:10.1016/j.jhazmat.2007.06.026

    Article  CAS  Google Scholar 

  19. H. Pape, J.E. Tillich, M.J. Holz, Appl. Geophys. 58, 232 (2006). doi:10.1016/j.jappgeo.2005.07.002

    Article  Google Scholar 

  20. M.R. Rezaee, H. Motiei, E.J. Kazemzadeh, Petrol. Sci. Eng. 56, 241 (2007). doi:10.1016/j.petrol.2006.09.004

    Article  CAS  Google Scholar 

  21. A.M.J. Attia, Petrol. Sci. Eng. 48, 185 (2005). doi:10.1016/j.petrol.2005.06.012

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Navas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navas, J., Poce-Fatou, J.A., Gallardo, J.J. et al. Evaluation method for pore size distribution by using capillary liquid suction tests. J Porous Mater 17, 207–215 (2010). https://doi.org/10.1007/s10934-009-9282-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-009-9282-7

Keywords

Navigation