Skip to main content
Log in

The formation mechanisms of multi-wall carbon nanotubes over the Ni modified MCM-41 catalysts

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Multi-wall carbon nanotubes (MWCNTs) were grown by thermal chemical vapor deposition (thermal CVD) of CH4 by using Ni-MCM-41 as the catalyst. Methane pyrolysis has been performed in a quartz tube reactor over the catalyst surface to form carbon atoms via dehydrogenation process. The migration and rearrangement of the surface carbon atoms result in the formation of MWCNTs. Transmission electron microscope (TEM) and scanning electron microscope (SEM) were used to determine the morphologies and structures of CNTs, and Raman spectroscopy was exploited to analyze their purity with the relative intensity between the D-band (Disorder band) in the vicinity of 1,350 cm−1 which is characteristic of the sp3 structure and G-band (Graphitic band) in vicinity of 1,580 cm−1 which is characteristic of the sp2 structure. In addition, the controlling factors of methane pyrolysis such as the catalyst composition; the reaction temperature, and the methane flow rate on the formation of MWCNTs were investigated to optimize the structure and yield of MWCNTs. SEM/TEM results indicate that the yield of the CNTs increases with increasing Ni concentration in the catalyst. The optimized reaction temperature to grow CNT is located between 640 and 670 °C. The uniform and narrow diameter MWCNTs form at lower flow rate of methane (∼30 sccm), and non-uniform in diameter and disorder structure of MWCNTs are observed at higher flow rate of methane. This is consistent with Raman analysis that the relative intensity of I D/I G increases with increasing methane flow rate. The formation mechanisms of the MWCNTs on the Ni-MCM-41 catalyst have been determined to be a Tip-Growth mode with a nanoscale catalyst particle capsulated in the tip of the CNT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, Nature 354, 56 (1991)

    Article  CAS  Google Scholar 

  2. A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune, M.J. Heben, Nature 386, 377 (1997)

    Article  CAS  Google Scholar 

  3. S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tomber, A.M. Cassell, H. Dai, Science 283, 512 (1999)

    Article  CAS  Google Scholar 

  4. C.H. Kiang, J.S. Choi, T.T. Tran, A.D. Bacher, J. Phy. Chem. B 103, 7449 (1999)

    Article  CAS  Google Scholar 

  5. S.J. Tans, A.R.M. Verschueren, C. Dekker, Nature 393, 49 (1998)

    Article  CAS  Google Scholar 

  6. Z. Yao, H.W.C. Postama, L. Balents, C. Dekker, Nature 402, 273 (1998)

    Google Scholar 

  7. T. Rueches, K. Kim, E. Joselevich, G.Y. Tseng, C.L. Cheung, C.M. Lieber, Science 289, 94 (2000)

    Article  Google Scholar 

  8. S.S. Wong, E. Joselevich, A.T. Wooley, C.L. Cheung, C.M. Lieber, Nature 394, 52 (1998)

    Article  Google Scholar 

  9. J.H. Hafner, C.L. Cheung, C.M. Lieber, J. Am. Chem. Soc. 121, 9750 (1999)

    Article  CAS  Google Scholar 

  10. H.G. Dai, Surf. Sci. 500, 218 (2000)

    Article  Google Scholar 

  11. V. Brigitte, P. Alain, C. Claude, C. Sauder, R. Pailler, J. Catherine, B. Patrick, P. Philippe, Science 290, 1331 (2000)

    Article  Google Scholar 

  12. Y. Saito, Carbon 33, 979 (1995)

    Article  CAS  Google Scholar 

  13. T. Guo P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smally, Chem. Phys. Lett. 243, 49 (1995)

    Article  Google Scholar 

  14. R. Sen, A. Govindaraj, C.N.R. Rao, Chem. Phys. Lett. 267, 276 (1997)

    Article  CAS  Google Scholar 

  15. S. Fan, M.G. Chaplin, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Science 283, 512 (1999)

    Article  CAS  Google Scholar 

  16. C.J. Lee, J. Park, Appl. Phys. Lett. 77, 3397 (2000)

    Article  CAS  Google Scholar 

  17. Z.F. Ren, Z.P. Huang, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provencio, Science 282, 1105 (1998)

    Article  CAS  Google Scholar 

  18. C. Bower, W. Zhu, S. Jin, O. Zhou, Appl. Phys. Lett. 77, 830 (2000)

    Article  CAS  Google Scholar 

  19. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359, 710 (1992)

    Article  CAS  Google Scholar 

  20. M.A. Ermakova, D. Yu. Ermakov, L.M. Plyasova, G.G. Kuvshinov, Catal. Lett. 62, 93 (1999)

    Article  CAS  Google Scholar 

  21. P.E. Anderson, N.M. Rodriguez, J. Mater. Res. 14, 2912 (1999)

    CAS  Google Scholar 

  22. A.S. Johansson, J.O. Carlsson, Thin Solid Film 261, 52 (1995)

    Article  CAS  Google Scholar 

  23. C. Gautier, E. Frackowiak, B. Bonnamy, F. Beguim, Electrochem. Soc. Proc. 8, 1291 (1998)

    Google Scholar 

  24. Y.H. Mo, A.K.M.F. Kibria, K.S. Nahm, Syn. Mater. 122, 443 (2001)

    Article  CAS  Google Scholar 

  25. C.-H. Kiang, J. Chem. Phys. 113, 4763 (2000)

    Article  CAS  Google Scholar 

  26. A.N. Andriotis, M. Menon, G. Froudakis, Phys. Rev. Lett. 85, 3193 (2000)

    Article  CAS  Google Scholar 

  27. J.F. Colomer, P. Piedigrosso, I. Willems, C. Journet, P. Bernier, G. Van Tendeloo, A. Fonseca, J.B. Nagy, J.Chem. Soc. Faraday Trans. 94, 3753 (1998)

    Article  CAS  Google Scholar 

  28. J.M. Kneller, R.J. Soto, S.E. Surber, J.-F. Colomer, A. Fonseca, J.B. Nagy, G. Van Tendeloo, T. Pietraβ, J. Am. Chem. Soc. 122, 10591 (2000)

    Article  CAS  Google Scholar 

  29. K. Mukhopadhyay, A. Koshio, T. Sugai, N. Tanaka, H. Shinohara, Z. Konya, J.B. Nagy, Chem. Phys. Lett. 303, 117 (1999)

    Article  CAS  Google Scholar 

  30. A. Zhang, C. Li, S. Bao, Q. Xu, Microporous Mesoporous Mater. 29, 383 (1999)

    Article  CAS  Google Scholar 

  31. A.K. Sinha, D.W. Hwang, L.-P. Hwang, Chem. Phys. Lett. 332, 45 (2000)

    Google Scholar 

  32. J. Jia, Y. Wang, E. Tanabe, T. Shishido, K. Takehira, Microporous Mesoporous Mater. 57, 283 (2003)

    Article  CAS  Google Scholar 

  33. W. Li, S. Xie, L. Qian, B. Chang, B. Zou, W. Zhou, R. Zhao, G. Wang, Science 264, 1701 (1996)

    Article  Google Scholar 

  34. K. Hernadi, A. Fonseca, J.B. Nagy, A. Siska, I. Kiricsi, Appl. Catal. 199, 245 (2000)

    Article  CAS  Google Scholar 

  35. S. Cui, C.Z. Lu, Y.L. Qiao, L. Cui, Carbon 37, 2070 (1999)

    Article  CAS  Google Scholar 

  36. P. Wang, E. Tanabe, K. Ito, J. Jia, H. Morioka, T. Shishido, K. Takehira, Appl. Catal. A 231, 35 (2002)

    Article  CAS  Google Scholar 

  37. K. Otsuka, S. Kobayashi, S. Takenaka, Appl. Catal. A 210, 371 (2001)

    Article  CAS  Google Scholar 

  38. S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Science 283, 512 (1999)

    Article  CAS  Google Scholar 

  39. S. Amelickx, X.B. Zhang, D. Bernaerts, X.F. Zhang, V. Ivanov, J.B. Nagy, Science 267, 635 (1995)

    Google Scholar 

  40. S.B. Sinnott, R. Andrew, D. Qian, A.M. Rao, Z. Mao, E.C. Dickey, F. Derbyshire, Chem. Phys. Lett. 315, 26 (1999)

    Article  Google Scholar 

  41. C.J. Lee, J. Park, Appl. Phys. Lett. 77, 3397 (2000)

    Article  CAS  Google Scholar 

  42. S. Vetrivel A. Pandurangan, Catal. Lett. 99(3–4), 141 (2005)

    Article  Google Scholar 

  43. M. Ziolek, A. Lewandowska, B. Grzybowska, React. Kinet. Catal. Lett. 80(2), 199 (2003)

    Article  CAS  Google Scholar 

  44. X. Gao, I.E. Wachs, M. Wong, Jackie Ying, J. Catal. 203, 18 (2001)

    Article  CAS  Google Scholar 

  45. S. Jun, S.H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, O. Terasaki, J. Am. Chem. Soc. 122, 10713 (2000)

    Article  Google Scholar 

  46. J. Ying, C.P. Mehnert, M.S. Wong, Angew. Chem. Int. Ed. 38, 56 (1999)

    Article  CAS  Google Scholar 

  47. K. M. Reddy, I. Moudrakovski, and A. Sayari, J. Chem. Soc. Chem. Commun. 1059 (1994)

  48. Z. Luan, J. Xu, H. He, J. Klinoswki, L. Kevan, J. Phys. Chem. 100, 19595 (1996)

    Article  CAS  Google Scholar 

  49. D. Wei, H. Wang, X. Feng, W. Chueh, P. Ravikovitch, M. Lyubovsky, T. Takehuchi, G.I. Haller, J. Phys. Chem. 103, 2113 (1999)

    CAS  Google Scholar 

  50. K. Hernadi, Z. Konya, A. Siska, J. Kiss, A. Oszko, J.B. Nagy, I. Kiricsi, Mater. Chem. Phys. 77, 537 (2002)

    Google Scholar 

  51. Y. Yang, Z. Hu, Y.N. Lu, Y. Chen, Mater. Chem. Phys. 83, 441 (2003)

    Google Scholar 

  52. N. M. Rodriguezm, J. Mater. Rev. 8(12), 3233 (1993)

    Article  Google Scholar 

  53. J. M. Thomas, Carbon 70, 359 (1969)

    Article  Google Scholar 

Download references

Acknowledgments

The financial support of the National Science Council of Taiwan (No. NSC 92-2214–E-005-004) and partially support from the Green Chemistry-Products group sponsored by the Ministry of Education are gratefully acknowledged. We would like to thanks the Professor Israel E. Wachs at Lehigh University for providing Raman Spectroscopy experiments. Thanks to the Center of Expansive Instruments at National Chung Hsing University for SEM/TEM studies and the Department of Material Engineering at National Chung Hsing University for XRD studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jih-Mirn Jehng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jehng, JM., Tung, WC. & Kuo, CH. The formation mechanisms of multi-wall carbon nanotubes over the Ni modified MCM-41 catalysts. J Porous Mater 15, 43–51 (2008). https://doi.org/10.1007/s10934-006-9050-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-006-9050-x

Keywords

Navigation