Skip to main content

Advertisement

Log in

Variation in the moisture regime of northeastern interior Alaska and possible linkages to the Aleutian Low: inferences from a late-Holocene δ18O record

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Analyses of oxygen and carbon isotopes in bulk carbonate and Chara-stem encrustations, X-ray diffraction, and sediment composition from Keche Lake offer new information on climatic change over the past ~3,400 years in northeastern interior Alaska. The δ18O and δD values of water samples from the lake and its inlet streams suggest that evaporation plays an important role in determining the isotopic composition of Keche Lake water at present. However, evaporative enrichment does not appear to be a major driver of the pronounced fluctuations in the bulk-carbonate δ18O record on the basis of comparison with Chara18O values. The δ18O values of bulk carbonate in the Keche Lake sediments vary by up to 10 ‰ over the past 3,400 years, with maximum values of −12 ‰ around 3,400 cal BP and between 2,100 and 1,500 cal BP. High δ18O peaks are associated with sediments dominated by quartz, feldspar, and clay minerals suggesting the influence of detrital carbonate. Multi-millennial patterns of δ18O variation at Keche Lake appear to be linked with changes in watershed and sediment-depositional processes, which may be driven by varying moisture abundance associated with the position of the Aleutian Low (AL). The increasing trend of carbonate δ18O from 3,400 to ~2,100 cal BP probably reflects the increasing importance of a westerly AL, and the high frequency of δ18O spikes ~2,100–1,500 cal BP may have resulted from the prevalence of a westerly AL position. Predominance of a westerly AL likely increased snowfall and winter temperature in the region. Such conditions would have promoted soil erosion and thermokarst activity during spring snowmelt, resulting in episodic large influxes of detrital carbonate to Keche Lake and elevating bulk-carbonate δ18O. Over the past 1,500 years, bulk-carbonate δ18O remained relatively high at Keche Lake but variation was much less pronounced than before. A broad δ18O peak centered ~400 cal BP may be related to enhanced winter moisture during the Little Ice Age, although our chronology is inadequate for a rigorous assessment of this interpretation. This study contributes a new δ18O record and offers additional information on past moisture-regime shifts associated with changing atmospheric-circulation patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbott MB, Finney BP, Edwards ME, Kelts KR (2000) Lake-level reconstructions and paleohydrology of Birch Lake, central Alaska, based on seismic reflection profiles and core transects. Quat Res 53:154–166

    Article  Google Scholar 

  • Anderson L, Abbott MB, Finney BP, Burns SJ (2005) Regional atmospheric circulation change in the North Pacific during the Holocene inferred from lacustrine carbonate oxygen isotopes, Yukon Territory, Canada. Quat Res 64:21–35

    Article  Google Scholar 

  • Andrews JE, Coletta P, Pentecost A, Riding R, Dennis S, Dennis PF, Spiro B (2004) Equilibrium and disequilibrium stable isotope effects in modern charophyte calcites: implications for palaeoenvironmental studies. Palaeogeog Palaeoclim Palaeoeco 204:101–114

    Article  Google Scholar 

  • Binford MW (1990) Calculation and uncertainty analysis of 210Pb dates for PIRLA project lake sediment cores. J Paleolimnol 3:253–267

    Article  Google Scholar 

  • Bowen GJ, Revenaugh J (2003) Interpolating the isotope composition of modern meteoric precipitation. Water Resour Res 39:1299–1311

    Article  Google Scholar 

  • Bowen GJ, Wilkinson B (2002) Spatial distribution of δ18O in meteoric precipitation. Geology 30:315–318

    Article  Google Scholar 

  • Brosgé WP, Reiser HN, Dutro JT, Detterman RL, Tailleur IL (2001) Geologic map of the arctic quadrangle, Alaska, Map I-2673. U.S. Department of the Interior, U.S. Geologic Survey

  • Chipman ML, Clarke GH, Clegg BF, Gregory-Eaves I, Hu FS (2009) A 2000-year record of climate change at Ongoke Lake, southwestern Alaska. J Paleolimnol 41:57–75

    Article  Google Scholar 

  • Clegg BF, Hu FS (2010) An oxygen-isotope record of Holocene climate change in south-central Brooks Range, Alaska. Quat Sci Rev 29:928–939

    Article  Google Scholar 

  • Clegg BF, Kelly R, Clarke GH, Walker IR, Hu FS (2011) Nonlinear response of summer temperature to Holocene insolation forcing in Alaska. Proc Nat Acad Sci USA 108:19299–19304

    Article  Google Scholar 

  • Coplen TB, Kendall C, Hopple J (1983) Comparison of stable isotope reference samples. Nature 302:236–238

    Article  Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703

    Article  Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468

    Article  Google Scholar 

  • Eakins JD, Morrison T (1978) A new procedure for the determination of lead-210 in lake and marine sediments. Int J Appl Radioact Iso 29:531–536

    Article  Google Scholar 

  • Edwards ME, Mock CJ, Finney BP, Barber VA, Bartlein PJ (2001) Potential analogues for paleoclimatic variations in eastern interior Alaska during the past 14,000 yr: atmospheric-circulation controls of regional temperature and moisture responses. Quat Sci Rev 20:89–202

    Article  Google Scholar 

  • Elliott G, Worsley P (1999) The sedimentology, stratigraphy, and 14C dating of a turf-banked solifluction lobe: evidence for Holocene slope instability at Okstindan, northern Norway. J Quat Sci 14:175–188

    Article  Google Scholar 

  • Epstein S, Buchsbaum R, Lowenstam HA, Urey HC (1953) Revised carbonate-water isotopic temperature scale. Geol Soc Am Bull 64:1315–1326

    Article  Google Scholar 

  • Hammurland D, Buchardt B (1996) Composite stable isotope records from the Late Weichselian lacustrine sequence at Grænge, Lolland, Denmark: evidence of Allerød and Younger Dryas environments. Boreas 25:9–22

    Google Scholar 

  • Higuera PE, Brubaker LB, Anderson PM, Hu FS, Brown TA (2009) Vegetation mediated the impacts of postglacial climatic change on fire regimes in the south-central Brooks Range, Alaska. Ecol Monogr 79:201–219

    Article  Google Scholar 

  • Hu FS, Ito E, Brown TA, Curry BB, Engstrom DR (2001) Pronounced climatic variations during the last two millennia in the Alaska Range. Proc Nat Acad Sci USA 98:10552–10556

    Article  Google Scholar 

  • Hu FS, Kaufman D, Yoneji S, Nelson D, Shemesh A, Huang YS, Tian J, Bond G, Clegg B, Brown T (2003) Cyclic variation and solar forcing of Holocene climate in the Alaskan subarctic. Science 301:1890–1893

    Article  Google Scholar 

  • IAEA/WMO (2006). Global Network of Isotopes in Precipitation. The GNIP Database. Accessible at: http://www.iaea.org/water

  • Kaufman DS, Anderson RS, Hu FS, Berg E, Werner A (2010) Evidence for a variable and wet Younger Dryas in southern Alaska. Quat Sci Rev 29:1445–1452

    Article  Google Scholar 

  • Kim ST, O’Neil JR (1997) Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim Cosmochim Ac 61:3461–3475

    Article  Google Scholar 

  • L’Heureux ML, Mann ME, Cook BI, Gleason BE, Vose RS (2004) Atmospheric circulation influences on seasonal precipitation patterns in Alaska during the latter 20th century. J Geophys Res 109. doi:10.1029/2003JD003845

  • Leng MJ, Marshall JD (2004) Paleoclimate interpretation of stable isotope data from lake sediment archives. Quat Sci Rev 23:811–831

    Article  Google Scholar 

  • Leng MJ, Jones MD, Frogley MR, Eastwood WJ, Kendrick CP, Roberts CN (2010) Detrital carbonate influences on bulk oxygen and carbon isotope composition of lacustrine sediments from the Mediterranean. Global Planet Change 71:175–182

    Article  Google Scholar 

  • Mann DH, Heiser PA, Finney B (2002) Holocene history of the Great Kobuk sand dunes, northwestern Alaska. Quat Sci Rev 21:709–731

    Article  Google Scholar 

  • Mock CJ, Bartlein PJ, Anderson PM (1998) Atmospheric circulation patterns and spatial climatic variations in Beringia. Int J Climatol 10:1085–1104

    Article  Google Scholar 

  • Oldfield F, Appleby PG, Batterbee RW (1977) Alternative 210Pb dating: results from the New Guinea highlands and lough Erne. Nature 271:339–342

    Article  Google Scholar 

  • Oswald WW, Anderson PM, Brown TA, Brubaker LB, Hu FS, Lozhikin AV, Tinner W, Kaltenrieder P (2005) Effects of sample mass and macrofossil type on radiocarbon dating of arctic and boreal lake sediments. Holocene 15:758–767

    Article  Google Scholar 

  • Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac G, Manning S, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, van der Plicht J, Weyhenmeyer CE (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51:1111–1150

    Google Scholar 

  • Shapley MD, Ito E, Donovan JJ (2008) Isotopic evolution and climate paleorecords: modeling boundary effects in groundwater dominated lakes. J Paleolimnol 39:17–33

    Article  Google Scholar 

  • Sikorski JJ, Kaufman DS, Manley WF, Nolan M (2009) Glacial-geologic evidence for decreased precipitation during the ‘Little Ice Age’ in the Brooks Range, Alaska. Arc Antarc Alp Res 41:138–150

    Article  Google Scholar 

  • Stuiver M, Reimer PJ (1993) Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35:215–230

    Google Scholar 

  • Tian J, Nelson DM, Hu FS (2011) How well do sediment indicators record past climate: an evaluation using annually laminated sediments. J Paleolimnol 45:73–84

    Article  Google Scholar 

  • Tinner W, Bigler C, Gedye S, Gregory-Eaves I, Jones RT, Kaltenrieder P, Krähenbühl U, Hu FS (2008) A 700-year paleoecological record of boreal-ecosystem responses to climatic variation from Alaska. Ecology 89:729–743

    Article  Google Scholar 

  • Trenberth KE, Hurrell JW (1994) Decadal atmosphere-ocean variations in the Pacific. Clim Dynam 9:303–319

    Article  Google Scholar 

  • WRCC (2011) Western regional climate center dataset of historical climate data, Bettles. Digital data at: wrcc@dri.edu

Download references

Acknowledgments

We thank Keith Hackley and Shari Fanta for carbonate-isotope analysis, Chris Eastoe for water-isotope analysis, Shane Butler for XRD analysis, and Tom Brown, Scott Lehman and Chad Wolak for radiocarbon analysis. Funding for this research was provided by NSF grants ARC 0612366 and 0907986 to FSH. Paleoclimate interpretations in this manuscript benefited from discussion with Lesleigh Anderson. The dataset reported here is available at http://www.ncdc.noaa.gov/paleo/data.html.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Sheng Hu.

Additional information

This is one of 18 papers published in a special issue edited by Darrell Kaufman, and dedicated to reconstructing Holocene climate and environmental change from Arctic lake sediments.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chipman, M.L., Clegg, B.F. & Hu, F.S. Variation in the moisture regime of northeastern interior Alaska and possible linkages to the Aleutian Low: inferences from a late-Holocene δ18O record. J Paleolimnol 48, 69–81 (2012). https://doi.org/10.1007/s10933-012-9599-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-012-9599-0

Keywords

Navigation