Skip to main content

Advertisement

Log in

Carbon cycling in Lake Erie during cultural eutrophication over the last century inferred from the stable carbon isotope composition of sediments

  • Original Paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

A ~106-cm sediment core from the eastern basin of Lake Erie was examined to investigate biogeochemical processes in this large lake during its cultural eutrophication over the last century. We measured stable carbon isotopes of total organic carbon and calcium carbonate (δ13CTOC and \( \delta^{13} {\text{C}}_{{{\text{CaCO}}_{ 3} }} \)) as well as the concentrations of total organic carbon (TOC) and calcium carbonate (CaCO3). δ13CTOC and TOC show a strong positive correlation throughout the core and record changes in phytoplankton productivity and nutrient loading. CaCO3 and TOC concentrations display a negative correlation throughout the core, suggesting that CaCO3 concentrations are controlled primarily by decomposition of TOC in the hypolimnion and the sediments, although temperature and invasive mussels are also potential controlling factors. \( \delta^{13} {\text{C}}_{{{\text{CaCO}}_{ 3} }} \) values show a positive correlation with δ13CTOC between 1909 and 1969, indicating phytoplankton productivity was the primary control for \( \delta^{13} {\text{C}}_{{{\text{CaCO}}_{ 3} }} \) values during eutrophication. However, a negative correlation between \( \delta^{13} {\text{C}}_{{{\text{CaCO}}_{ 3} }} \) and δ13CTOC from 1970 to 2002 suggests that these two proxies tracked different aspects of the carbon cycle in the lake in more recent times. The cause for the negative correlation is not yet known, but it is perhaps associated with temperature variations and seasonal differences in productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barbiero RP, Tuchman ML, Millard ES (2006) Post-dreissenid increases in transparency during summer stratification in the offshore waters of Lake Ontario: is a reduction in whiting events the cause? J Great Lakes Res 32:131–141. doi:10.3394/0380-1330(2006)32[131:PIITDS]2.0.CO;2

    Article  Google Scholar 

  • Berner EK, Berner RA (1996) Global environment: water, air, and geochemical cycles. Prentice-Hall Inc, Englewood Cliffs

    Google Scholar 

  • Bourbonniere RA, Meyers PA (1996) Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie. Limnol Oceanogr 41:352–359

    Google Scholar 

  • Carr JF, Hiltunen JK (1965) Changes in the bottom fauna of western Lake Erie from 1930 to 1961. Limnol Oceanogr 10:551–569

    Google Scholar 

  • Carrick HJ (2004) Algal distribution patterns in Lake Erie: implications for oxygen balances in the eastern basin. J Great Lakes Res 30:133–147

    Google Scholar 

  • Carrick HJ, Moon JB, Gaylord BF (2005) Phytoplankton dynamics and hypoxia in Lake Erie: a hypothesis concerning benthic–pelagic coupling in the central basin. J Great Lakes Res 31:111–124

    Article  Google Scholar 

  • Davis CC (1964) Evidence for the eutrophication of Lake Erie from phytoplankton records. Limnol Oceanogr 3:275–283

    Article  Google Scholar 

  • Dean W (1999) The carbon cycle and biogeochemical dynamics in lake sediments. J Paleolimnol 21:375–393. doi:10.1023/A:1008066118210

    Article  Google Scholar 

  • Dean W (2002) A 1500-year record of climatic and environmental changes in Elk Lake, Clearwater County, Minnesota II: geochemistry, mineralogy, and stable isotopes. J Paleolimnol 27:301–319. doi:10.1023/A:1016054522905

    Article  Google Scholar 

  • Findlay DL, Kasina SEM, Stainton MP, Beaty K, Lyng M (2001) Climatic influences on algal populations of boreal forest lakes in the Experimental Lakes Area. Limnol Oceanogr 46:1784–1793

    Google Scholar 

  • Francey RJ, Allison CE, Etheridge DM, Trudinger CM, Enting IG, Leuenberger M, Langenfelds RL, Michel E, Steele LP (1999) A 1000-year high precision record of δ13C in atmospheric CO2. Tellus 51B:170–193

    Google Scholar 

  • Hartman WL (1973) Effects of exploitation, environmental changes, and new species on the fish habitats and resources of Lake Erie. Technique report no. 22, Great Lakes Fishery Commission

  • Hatch RW, Nepszy SJ, Muth KM, Baker CT (1987) Dynamics of the recovery of the western Lake Erie walleye Stizostedion viterum vitreum stock. Can J Fish Aquat Sci 44(Suppl 2):15–22. doi:10.1139/f87-305

    Article  Google Scholar 

  • Hayes JM (1993) Factors controlling 13C contents of sedimentary organic compounds: principles and evidence. Mar Geol 113:111–125. doi:10.1016/0025-3227(93)90153-M

    Article  Google Scholar 

  • Hodell DA, Schelske CL (1998) Production, sedimentation and isotopic composition of organic matter in Lake Ontario. Limnol Oceanogr 43:200–214

    Google Scholar 

  • Hodell DA, Schelske CL, Fahnenstiel GL, Robbins LL (1998) Biologically induced calcite and its isotopic composition in Lake Ontario. Limnol Oceanogr 43:187–199

    Google Scholar 

  • Hollander DJ, McKenzie JA (1991) CO2 control on carbon isotope fractionation during aqueous photosynthesis: a paleo-CO2 barometer. Geology 19:929–932. doi:10.1130/0091-7613(1991)019<0929:CCOCIF>2.3.CO;2

    Article  Google Scholar 

  • Hollander DJ, Smith MA (2001) Microbially mediated carbon cycling as a control on the δ13C of sedimentary carbon in eutrophic Lake Mendota (USA): new models for interpreting isotopic excursions in the sedimentary record. Geochim Cosmochim Acta 65:4321–4337. doi:10.1016/S0016-7037(00)00506-8

    Article  Google Scholar 

  • Howell ET, Marvin CH, Bilyea RW, Kauss PB, Somers K (1996) Changes in environmental conditions during Dreissena colonization of a monitoring station in eastern Lake Erie. J Great Lakes Res 22:744–756

    Google Scholar 

  • Johnson L, Kling G, Magnuson J, Shuter B (2003) Changes in lake productivity and eutrophication. Confronting climate change in the Great Lakes Region Technical Appendix http://www.ucsusa.org/greatlakes/pdf/lake_productivity.pdf

  • Kelley CA, Coffin RB, Cifuentes LA (1998) Stable isotope evidence for alternative bacterial carbon sources in the Gulf of Mexico. Limnol Oceanogr 43:1962–1969

    Google Scholar 

  • Leach JH (1999) Lake Erie: passages revisited. In: Munawar M, Edsail T, Munawar IF (eds) State of Lake Ere: past, present and future. Backhuys Publishers, Leiden, pp 5–22

    Google Scholar 

  • Lehmann MF, Bernasconi SM, McKenzie JA, Barbieri A, Simona M, Veronesi M (2004) Seasonal variation of the δ13C and δ15N of particulate and dissolved carbon and nitrogen in Lake Lugano: constraints on biogeochemical cycling in a eutrophic lake. Limnol Oceanogr 49:415–429

    Google Scholar 

  • Lojen S, Ogrinc N, Dolenec T (1997) Carbon and nitrogen stable isotope fractionation in the sediment of Lake Bled (Slovenia). Water Air Soil Pollut 99:315–323

    Google Scholar 

  • MacIsaac HJ (1999) Biological invasions in Lake Erie: past, present and future. In: Munawar M, Edsail T, Munawar IF (eds) State of Lake Ere: past, present and future. Backhuys Publishers, Leiden, pp 305–322

    Google Scholar 

  • Makarewicz JC (1993) Phytoplankton biomass species composition in Lake Erie, 1970 to 1987. J Great Lakes Res 19:258–274

    Google Scholar 

  • Makarewicz JC, Bertram P (1991) Evidence for the restoration of the Lake Erie ecosystem. Bioscience 41:216–223. doi:10.2307/1311411

    Article  Google Scholar 

  • McKenzie JA (1985) Carbon isotopes and productivity in the lacustrine and marine environment. In: Stumm W (ed) Chemical processes in lakes. Wiley, New York, pp 99–117

    Google Scholar 

  • Meyers PA (2003) Application of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org Geochem 34:261–289. doi:10.1016/S0146-6380(02)00168-7

    Article  Google Scholar 

  • Meyers PA, Ishiwatari R (1993) Lacustrine organic geochemistry: an overview of indicators of organic matter sources and diagenesis in lake sediments. Org Geochem 20:867–900. doi:10.1016/0146-6380(93)90100-P

    Article  Google Scholar 

  • Myrbo A, Shapley MD (2006) Seasonal water-column dynamics of dissolved inorganic carbon stable isotopic compositions (δ13CDIC) in small hardwater lakes in Minnesota and Montana. Geochim Cosmochim Acta 70:2699–2714. doi:10.1016/j.gca.2006.02.010

    Article  Google Scholar 

  • Nicholls KH, Hopkins GJ (1993) Recent changes in Lake Erie (North Shore) phytoplankton: cumulative impacts of Phosphorus loading reductions and the zebra mussel introduction. J Great Lakes Res 19:637–647

    Google Scholar 

  • Nicholls KH, Standke SJ, Hopkins GJ (1999) Effects of dreissenid mussels on nitrogen and phosphorus in north shore waters of Lake Erie. In: Munawar M, Edsail T, Munawar IF (eds) State of Lake Ere: past, present and future. Backhuys Publishers, Leiden, pp 5–22

    Google Scholar 

  • Ostrom NE, Russ ME, Field A, Piwinski L, Twiss MR, Carrick HJ (2005) Ratios of community respiration to photosynthesis and rates of primary production in Lake Erie via oxygen isotope techniques. J Great Lakes Res 31:138–153

    Article  Google Scholar 

  • Robbins JA, Holmes C, Halley R, Bothner, M, Shinn E, Graney J, Keeler G, tenBrink M, Orlandini KA, Rudnick D (2000) Time-averaged fluxes of lead and fallout radionuclides to sediments in Florida Bay. J Geophys Res-Oceans 105:28805–28821

    Google Scholar 

  • Robinson SG, Sahota JTS, Oldfield F (2000) Early diagenesis in North Atlantic abyssal plain sediments characterized by rock-magnetic and geochemical indices. Mar Geol 163:77–107. doi:10.1016/S0025-3227(99)00108-5

    Article  Google Scholar 

  • Schelske CL, Hodell DA (1991) Recent changes in productivity and climate of Lake Ontario detected by isotopic analysis of sediments. Limnol Oceanogr 36:961–975

    Google Scholar 

  • Schelske CL, Hodell DA (1995) Using carbon isotopes of bulk sedimentary organic matter to reconstruct the history of nutrient loading and eutrophication in Lake Erie. Limnol Oceanogr 40:918–929

    Google Scholar 

  • Schelske CL, Robbins JA, Gardner WS, Conley DJ, Bourbonniere RA (1988) Sediment record of biogeochemical responses to anthropogenic perturbations of nutrient cycles in Lake Ontario. Can J Fish Aquat Sci 45:1291–1303

    Google Scholar 

  • Strong AE, Eadie BJ (1978) Satellite observations of calcium carbonate precipitations in Great Lakes. Limnol Oceanogr 23:877–887

    Article  Google Scholar 

  • Summons RE, Jahnke LL, Roksandic Z (1994) Carbon isotopic fractionation in lipids from methanotrophic bacteria: relevance for interpretation of the geochemical record of biomarkers. Geochim Cosmochim Acta 58:2853–2863. doi:10.1016/0016-7037(94)90119-8

    Article  Google Scholar 

  • Teranes JL, Bernasconi SM (2005) Factors controlling δ13C values of sedimentary carbon in hypertrophic Baldeggersee, Switzerland, and implications for interpreting isotope excursions in lake sedimentary records. Limnol Oceanogr 50:914–922

    Google Scholar 

  • Upsdell BL (2005) The carbon and nitrogen composition of suspended particulate matter in Lake Erie, selected tributaries, and its outflow. MS thesis, University of Waterloo

  • Wright S, Tidd WM (1933) Summary of limnological investigations in western Lake Erie in 1929 and 1930. Trans Am Fish Soc 63:271–285. doi:10.1577/1548-8659(1933)63[271:SOLIIW]2.0.CO;2

    Article  Google Scholar 

  • Zhou W, Yu X, Jull AJ, Burr G, Xiao J, Lu X, Xian F (2004) High-resolution evidence from southern China of an early Holocene optimum and a mid-Holocene dry event during the past 18, 000 years. Quat Res 62:39–48. doi:10.1016/j.yqres.2004.05.004

    Article  Google Scholar 

  • Zhou W, Xie S, Meyers PA, Zheng Y (2005) Reconstruction of late glacial and Holocene climate evolution in southern China from geolipids and pollen in the Dingnan peat sequence. Org Geochem 36:1272–1284. doi:10.1016/j.orggeochem.2005.04.005

    Article  Google Scholar 

Download references

Acknowledgments

We thank two anonymous reviewers for their valuable suggestions and Dr. Chris Eastoe from University of Arizona for helpful discussions about analytical precision. Drs. Kenneth W. Klewin and David C. Rockwelland from the US Environmental Protection Agency kindly provided TP concentrations for the EB of Lake Erie since 1982. This study was funded with grants from the Cooperative Institute for Limnology and Ecological Research and the Scott Turner Fund of the Department of Geological Sciences at The University of Michigan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuehan Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Y., Meyers, P.A., Eadie, B.J. et al. Carbon cycling in Lake Erie during cultural eutrophication over the last century inferred from the stable carbon isotope composition of sediments. J Paleolimnol 43, 261–272 (2010). https://doi.org/10.1007/s10933-009-9330-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-009-9330-y

Keywords

Navigation