Skip to main content

Advertisement

Log in

Discovery of New Dual-Target Agents Against PPAR-γ and α-Glucosidase Enzymes with Molecular Modeling Methods: Molecular Docking, Molecular Dynamic Simulations, and MM/PBSA Analysis

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Type 2 diabetes mellitus (T2DM) has become a serious public health problem both in our country and worldwide, being the most prevalent type of diabetes. The combined use of drugs in the treatment of T2DM leads to serious side effects, including gastrointestinal problems, liver toxicity, hypoglycemia, and treatment costs. Hence, there has been a growing emphasis on drugs that demonstrate dual interactions. Several studies have suggested that dual-target agents for peroxisome proliferator-activated receptor-γ (PPAR-γ) and alpha-glucosidase (α-glucosidase) could be a potent approach for treating patients with diabetes. We aim to develop new antidiabetic agents that target PPAR-γ and α-glucosidase enzymes using molecular modeling techniques. These compounds show dual interactions, are more effective, and have fewer side effects. The molecular docking method was employed to investigate the enzyme-ligand interaction mechanisms of 159 newly designed compounds with target enzymes. Additionally, we evaluated the ADME properties and pharmacokinetic suitability of these compounds based on Lipinski and Veber’s rules. Compound 70, which exhibited favorable ADME properties, demonstrated more effective binding energy with both PPAR-γ and α-glucosidase enzymes (-12,16 kcal/mol, -10.07 kcal/mol) compared to the reference compounds of Acetohexamide (-9.31 kcal/mol, -7.48 kcal/mol) and Glibenclamide (-11.12 kcal/mol, -8.66 kcal/mol). Further, analyses of MM/PBSA binding free energy and molecular dynamics (MD) simulations were conducted for target enzymes with compound 70, which exhibited the most favorable binding affinities with both enzymes. Based on this information, our study aims to contribute to the development of new dual-target antidiabetic agents with improved efficacy, reduced side effects, and enhanced reliability for diabetes treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ogurtsova K, Guariguata L, Barengo NC, Ruiz PL, Sacre JW, Karuranga S et al (2022) IDF diabetes Atlas: Global estimates of undiagnosed diabetes in adults for 2021. Diabetes Res Clin Pract 183:109118

    Article  PubMed  Google Scholar 

  2. Intenational Diabetes Federation (IDF) (2022) Intenational diabetes federation (IDF). Available from: https://diabetesatlas.org/. Accessed 13 Apr 2024

  3. Ahmad E, Lim S, Lamptey R, Webb DR, Davies MJ (2022) Type 2 diabetes. Lancet 400(10365):1803–1820

    Article  PubMed  Google Scholar 

  4. Dhameja M, Gupta P (2019) Synthetic heterocyclic candidates as promising alpha-glucosidase inhibitors: An overview. Eur J Med Chem 176:343–377

    Article  CAS  PubMed  Google Scholar 

  5. Tan SY, Mei Wong JL, Sim YJ, Wong SS, Mohamed Elhassan SA, Tan SH et al (2019) Type 1 and 2 diabetes mellitus: A review on current treatment approach and gene therapy as potential intervention. Diabetes Metab Syndr 13(1):364–372

    Article  PubMed  Google Scholar 

  6. Artasensi A, Pedretti A, Vistoli G, Fumagalli L (2020) Type 2 Diabetes Mellitus: A Review of Multi-Target Drugs. Molecules 25(8):1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chaudhury A, Duvoor C, Reddy Dendi VS, Kraleti S, Chada A, Ravilla R et al (2017) Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Mellitus Management. Front Endocrinol (Lausanne) 8:6

    Article  PubMed  Google Scholar 

  8. Janani C, RanjithaKumari BD (2015) PPAR gamma gene–a review. Diabetes Metab Syndr 9(1):46–50

    Article  CAS  PubMed  Google Scholar 

  9. Nanjan MJ, Mohammed M, Prashantha Kumar BR, Chandrasekar MJN (2018) Thiazolidinediones as antidiabetic agents: A critical review. Bioorg Chem 77:548–567

    Article  CAS  PubMed  Google Scholar 

  10. Jiang H, Zhou XE, Shi J, Zhou Z, Zhao G, Zhang X et al (2020) Identification and structural insight of an effective PPARgamma modulator with improved therapeutic index for anti-diabetic drug discovery. Chem Sci 11(8):2260–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ballav S, Biswas B, Sahu VK, Ranjan A, Basu S (2022) PPAR-gamma Partial Agonists in Disease-Fate Decision with Special Reference to Cancer. Cells 11(20):3215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nolte RT, Wisely GB, Westin S, Cobb JE, Lambert MH, Kurokawa R et al (1998) Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma. Nature 395(6698):137–143

    Article  CAS  PubMed  Google Scholar 

  13. Gangadhariah M, Pardhi T, Ravilla J, Chandra S, Singh SA (2022) Citrus nutraceutical eriocitrin and its metabolites are partial agonists of peroxisome proliferator-activated receptor gamma (PPARgamma): a molecular docking and molecular dynamics study. J Biomol Struct Dyn 41(21):11373–11393

    Article  PubMed  Google Scholar 

  14. Singh VP, Dowarah J, Marak BN, Tewari AK (2021) Design, synthesis, in silico analysis with PPAR-γ receptor and study of non-covalent interactions in unsymmetrical heterocyclic/phenyl fleximer. J Chin Chem Soc 68(1):150–158

    Article  CAS  Google Scholar 

  15. Rajapaksha H, Bhatia H, Wegener K, Petrovsky N, Bruning JB (2017) X-ray crystal structure of rivoglitazone bound to PPARgamma and PPAR subtype selectivity of TZDs. Biochim Biophys Acta Gen Subj 1861(8):1981–1991

    Article  CAS  PubMed  Google Scholar 

  16. van de Laar FA (2008) Alpha-glucosidase inhibitors in the early treatment of type 2 diabetes. Vasc Health Risk Manag 4(6):1189–1195

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mehmood R, Mughal EU, Elkaeed EB, Obaid RJ, Nazir Y, Al-Ghulikah HA et al (2022) Synthesis of Novel 2,3-Dihydro-1,5-Benzothiazepines as alpha-Glucosidase Inhibitors: In Vitro, In Vivo, Kinetic, SAR, Molecular Docking, and QSAR Studies. ACS Omega 7(34):30215–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hedrington MS, Davis SN (2019) Considerations when using alpha-glucosidase inhibitors in the treatment of type 2 diabetes. Expert Opin Pharmacother 20(18):2229–2235

    Article  PubMed  Google Scholar 

  19. Hossain U, Das AK, Ghosh S, Sil PC (2020) An overview on the role of bioactive alpha-glucosidase inhibitors in ameliorating diabetic complications. Food Chem Toxicol 145:111738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moreland RJ, Jin X, Zhang XK, Decker RW, Albee KL, Lee KL et al (2005) Lysosomal acid alpha-glucosidase consists of four different peptides processed from a single chain precursor. J Biol Chem 280(8):6780–6791

    Article  CAS  PubMed  Google Scholar 

  21. Nkoana JK, Maluleka MM, Mphahlele MJ, Mampa RM, Choong YS (2022) Synthesis, Conformational Analysis and Evaluation of the 2-aryl-4-(4-bromo-2-hydroxyphenyl)benzo[1,5]thiazepines as Potential alpha-Glucosidase and/or alpha-Amylase Inhibitors. Molecules 27(20):6935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Roig-Zamboni V, Cobucci-Ponzano B, Iacono R, Ferrara MC, Germany S, Bourne Y et al (2017) Structure of human lysosomal acid alpha-glucosidase-a guide for the treatment of Pompe disease. Nat Commun 8(1):1111

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jung Y, Cao Y, Paudel S, Yoon G, Cheon SH, Bae GU et al (2017) Antidiabetic effect of SN158 through PPARalpha/gamma dual activation in ob/ob mice. Chem Biol Interact 268:24–30

    Article  CAS  PubMed  Google Scholar 

  24. Singh AK, Raj V, Keshari AK, Rai A, Kumar P, Rawat A et al (2018) Isolated mangiferin and naringenin exert antidiabetic effect via PPARgamma/GLUT4 dual agonistic action with strong metabolic regulation. Chem Biol Interact 280:33–44

    Article  CAS  PubMed  Google Scholar 

  25. Ghannay S, Snoussi M, Messaoudi S, Kadri A, Aouadi K (2020) Novel enantiopure isoxazolidine and C-alkyl imine oxide derivatives as potential hypoglycemic agents: Design, synthesis, dual inhibitors of alpha-amylase and alpha-glucosidase, ADMET and molecular docking study. Bioorg Chem 104:104270

    Article  CAS  PubMed  Google Scholar 

  26. Darwish KM, Salama I, Mostafa S, Gomaa MS, Helal MA (2016) Design, synthesis, and biological evaluation of novel thiazolidinediones as PPARgamma/FFAR1 dual agonists. Eur J Med Chem 109:157–172

    Article  CAS  PubMed  Google Scholar 

  27. Ye GJ, Lan T, Huang ZX, Cheng XN, Cai CY, Ding SM et al (2019) Design and synthesis of novel xanthone-triazole derivatives as potential antidiabetic agents: alpha-Glucosidase inhibition and glucose uptake promotion. Eur J Med Chem 177:362–373

    Article  CAS  PubMed  Google Scholar 

  28. He X-F, Chen J-J, Huang X-Y, Hu J, Zhang X-K, Guo Y-Q et al (2021) The antidiabetic potency of Amomum tsao-ko and its active flavanols, as PTP1B selective and α-glucosidase dual inhibitors. Ind Crops Prod 160:112908

    Article  CAS  Google Scholar 

  29. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3(11):935–949

    Article  CAS  PubMed  Google Scholar 

  30. Lengauer T, Rarey M (1996) Computational methods for biomolecular docking. Curr Opin Struct Biol 6(3):402–406

    Article  CAS  PubMed  Google Scholar 

  31. Biovia DS (2019) Discovery studio modeling environment, 2020th edn. Dassault Systèmes, San Diego

    Google Scholar 

  32. Jurrus E, Engel D, Star K, Monson K, Brandi J, Felberg LE et al (2018) Improvements to the APBS biomolecular solvation software suite. Protein Sci 27(1):112–128

    Article  CAS  PubMed  Google Scholar 

  33. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson, T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16, revision C.01. Gaussian, Inc., Wallingford CT

  34. Xiong G, Wu Z, Yi J, Fu L, Yang Z, Hsieh C et al (2021) ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 49(W1):W5–W14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ferreira LLG, Andricopulo AD (2019) ADMET modeling approaches in drug discovery. Drug Discov Today 24(5):1157–1165

    Article  CAS  PubMed  Google Scholar 

  36. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhang Y, Forli S, Omelchenko A, Sanner MF (2019) AutoGridFR: Improvements on AutoDock Affinity Maps and Associated Software Tools. J Comput Chem 40(32):2882–2886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS et al (2009) AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B et al (2015) GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1:19–25

    Article  Google Scholar 

  40. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J et al (2010) CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31(4):671–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Huang J, MacKerell AD Jr (2013) CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J Comput Chem 34(25):2135–2145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Homeyer N, Gohlke H (2012) Free energy calculations by the molecular mechanics Poisson− Boltzmann surface area method. Mol Inf 31(2):114–122

    Article  CAS  Google Scholar 

  43. Kumari R, Kumar R, Consortium OSDD, Lynn A (2014) g_mmpbsa A GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inform Model 54(7):1951–62

    Article  CAS  Google Scholar 

  44. Rammohan A, Bhaskar BV, Venkateswarlu N, Gu W, Zyryanov GV (2020) Design, synthesis, docking and biological evaluation of chalcones as promising antidiabetic agents. Bioorg Chem 95:103527

    Article  CAS  PubMed  Google Scholar 

  45. Homayun B, Lin X, Choi H-J (2019) Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics 11(3):129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Guan L, Yang H, Cai Y, Sun L, Di P, Li W et al (2019) ADMET-score - a comprehensive scoring function for evaluation of chemical drug-likeness. Medchemcomm 10(1):148–157

    Article  CAS  PubMed  Google Scholar 

  47. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45(12):2615–2623

    Article  CAS  PubMed  Google Scholar 

  48. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2012) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 64:4–17

    Article  Google Scholar 

  49. Di L, Kerns EH (2015) Drug-like properties: concepts, structure design and methods from ADME to toxicity optimization. Available from: https://www.sciencedirect.com/book/9780123695208/druglike-properties-concepts-structure-design-and-methods

Download references

Acknowledgements

The numerical calculations were performed at The Scientific and Technological Research Council of Turkey (TUBITAK) ULAKBIM High Performance and Grid Computing Center (TRUBA resources). This scientific work was financially supported by the Turkish Scientific and Technological Research Council (TUBITAK) (Project Number: 121Z746). This article is based upon work from COST Action CA21162—Establishing a Pan-European Network on Computational Redesign of Enzymes (COZYME), supported by COST (European Cooperation in Science and Technology).

Funding

This scientific work was financially supported by the Turkish Scientific and Technological Research Council (TUBITAK) (Project Number: 121Z746).

Author information

Authors and Affiliations

Authors

Contributions

"BS.KA. and EE.OE. conceived and designed research, G.TY. and S.K. wrote the main manuscript text, prepared figures, and conducted the in-silico analysis. All authors reviewed the manuscript."

Corresponding author

Correspondence to Gizem Tatar-Yılmaz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2727 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaya, S., Tatar-Yılmaz, G., Aktar, B.S.K. et al. Discovery of New Dual-Target Agents Against PPAR-γ and α-Glucosidase Enzymes with Molecular Modeling Methods: Molecular Docking, Molecular Dynamic Simulations, and MM/PBSA Analysis. Protein J (2024). https://doi.org/10.1007/s10930-024-10196-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10930-024-10196-y

Keywords

Navigation