Skip to main content
Log in

Role Transformation of HSPA8 to Heme-peroxidase After Binding Hemin to Catalyze Heme Polymerization

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Hemin, a byproduct of hemoglobin degradation, inflicts oxidative insult to cells. Following its accumulation, several proteins are recruited for heme detoxification with heme oxygenase playing the key role. Chaperones play a protective role primarily by preventing protein degradation and unfolding. They also are known to have miscellaneous secondary roles during similar situations. To discover a secondary role of chaperones during heme stress we studied the role of the chaperone HSPA8 in the detoxification of hemin. In-silico studies indicated that HSPA8 has a well-defined biophoric environment to bind hemin. Through optical difference spectroscopy, we found that HSPA8 binds hemin through its N-terminal domain with a Kd value of 5.9 ± 0.04 µM and transforms into a hemoprotein. The hemoprotein was tested for exhibiting peroxidase activity using guaiacol as substrate. The complex formed reacts with H2O2 and exhibits classical peroxidase activity with an ability to oxidize aromatic and halide substrates. HSPA8 is dose-dependently catalyzing heme polymerization through its N-terminal domain. The IR results reveal that the polymer formed exhibits structural similarities to β-hematin suggesting its covalent nature. The polymerization mechanism was tested through optical spectroscopy, spin-trap, and activity inhibition experiments. The results suggest that the polymerization occurs through a peroxidase-H2O2 system involving a one-electron transfer mechanism, and the formation of free radical and radical-radical interaction. It highlights a possible role of the HSPA8-hemin complex in exhibiting cytoprotective function during pathological conditions like malaria, sickle cell disease, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ponka P (1999) Cell biology of heme. Am J Med Sci 318(4):241–256

    Article  CAS  PubMed  Google Scholar 

  2. Kumar S, Bandyopadhyay U (2005) Free heme toxicity and its detoxification systems in human. Toxicol Lett 157(3):175–188

    Article  CAS  PubMed  Google Scholar 

  3. Grunwald EW, Richards MP (2006) Mechanisms of heme protein-mediated lipid oxidation using hemoglobin and myoglobin variants in raw and heated washed muscle. J Agric Food Chem 54(21):8271–8280

    Article  CAS  PubMed  Google Scholar 

  4. Bandyopadhyay U et al (1992) Localization of gastric peroxidase and its inhibition by mercaptomethylimidazole, an inducer of gastric acid secretion. Biochem J 284(2):305–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wijkstrom-Frei C et al (2003) Lactoperoxidase and human airway host defense. Am J Respir Cell Mol Biol 29(2):206–212

    Article  CAS  PubMed  Google Scholar 

  6. Trivedi V et al (2005) Mechanism of horseradish peroxidase-catalyzed heme oxidation and polymerization (β-hematin formation). Biochim et Biophys Acta (BBA)-General Subj 1723(1–3):221–228

    Article  CAS  Google Scholar 

  7. Deshmukh R, Trivedi V (2014) Phagocytic uptake of oxidized heme polymer is highly cytotoxic to macrophages. PLoS One 9(7):e103706

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  8. Gamage SMK et al (2021) Hemin, a major heme molecule, induced cellular and genetic alterations in normal colonic and colon Cancer cells. Pathol-Res Pract 224:153530

    Article  Google Scholar 

  9. Vasconcellos LR et al (2016) Protein aggregation as a cellular response to oxidative stress induced by heme and iron. Proc Natl Acad Sci 113(47):E7474–E7482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Butt OI, Buehler PW, D’Agnillo F (2011) Blood-brain barrier disruption and oxidative stress in guinea pig after systemic exposure to modified cell-free hemoglobin. Am J Pathol 178(3):1316–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Balla G et al (1991) Exposure of endothelial cells to free heme potentiates damage mediated by granulocytes and toxic oxygen species. Lab Invest 64(5):648–655

    CAS  PubMed  Google Scholar 

  12. Maines MD (1988) Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J 2(10):2557–2568

    Article  CAS  PubMed  Google Scholar 

  13. Maines MD (1997) The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol 37:517

    Article  CAS  PubMed  Google Scholar 

  14. Panahian N, Yoshiura M, Maines MD (1999) Overexpression of heme oxygenase-1 is neuroprotective in a model of permanent middle cerebral artery occlusion in transgenic mice. J Neurochem 72(3):1187–1203

    Article  CAS  PubMed  Google Scholar 

  15. Pandey AV, Tekwani BL (1996) Formation of haemozoin/β-haematin under physiological conditions is not spontaneous. FEBS Lett 393(2–3):189–192

    Article  CAS  PubMed  Google Scholar 

  16. Sullivan DJ Jr, Gluzman IY, Goldberg DE (1996) Plasmodium hemozoin formation mediated by histidine-rich proteins. Science 271(5246):219–222

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Arruda MA et al (2004) Heme inhibits human neutrophil apoptosis: involvement of phosphoinositide 3-kinase, MAPK, and NF-κB. J Immunol 173(3):2023–2030

    Article  CAS  PubMed  Google Scholar 

  18. Pethő D et al (2021) Heme cytotoxicity is the consequence of endoplasmic reticulum stress in atherosclerotic plaque progression. Sci Rep 11(1):1–23

    Article  Google Scholar 

  19. Kumsta C, Jakob U (2009) Redox-regulated chaperones. Biochemistry 48(22):4666–4676

    Article  CAS  PubMed  Google Scholar 

  20. Straus D, Walter W, Gross CA (1990) DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of sigma 32. Genes Develop 4(12a):2202–2209

    Article  CAS  PubMed  Google Scholar 

  21. Szyller J, Bil-Lula I (2021) Heat shock proteins in oxidative stress and ischemia/reperfusion injury and benefits from physical exercises: a review to the current knowledge. Oxid Med Cell Longev 2021:1–12

    Article  Google Scholar 

  22. Brocchieri L, de Conway M, Macario AJ (2008) hsp70 genes in the human genome: conservation and differentiation patterns predict a wide array of overlapping and specialized functions. BMC Evol Biol 8(1):1–20

    Article  Google Scholar 

  23. McCallister C et al (2015) Functional diversification and specialization of cytosolic 70-kDa heat shock proteins. Sci Rep 5(1):1–11

    Article  Google Scholar 

  24. Multhoff, G., Heat shock proteins in immunity. Mol Chaperones Health Dis, 2006:279–304

  25. Arispe N et al (2004) Hsc70 and Hsp70 interact with phosphatidylserine on the surface of PC12 cells resulting in a decrease of viability. FASEB J 18(14):1636–1645

    Article  CAS  PubMed  Google Scholar 

  26. Guidon PT Jr, Hightower LE (1986) The 73 kilodalton heat shock cognate protein purified from rat brain contains nonesterified palmitic and stearic acids. J Cell Physiol 128(2):239–245

    Article  CAS  PubMed  Google Scholar 

  27. Guidon PT Jr, Hightower LE (1986) Purification and initial characterization of the 71-kilodalton rat heat-shock protein and its cognate as fatty acid binding proteins. Biochemistry 25(11):3231–3239

    Article  CAS  PubMed  Google Scholar 

  28. Stricher F et al (2013) HSPA8/HSC70 chaperone protein: structure, function, and chemical targeting. Autophagy 9(12):1937–1954

    Article  CAS  PubMed  Google Scholar 

  29. Beckmann RP, Mizzen LE, Welch WJ (1990) Interaction of Hsp 70 with newly synthesized proteins: implications for protein folding and assembly. Science 248(4957):850–854

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Ferrarini M et al (1992) Unusual expression and localization of heat-shock proteins in human tumor cells. Int J Cancer 51(4):613–619

    Article  CAS  PubMed  Google Scholar 

  31. Tsuboi N et al (1994) Monoclonal antibody specifically reacting against 73-kilodalton heat shock cognate protein: possible expression on mammalian cell surface. Hybridoma 13(5):373–381

    Article  CAS  PubMed  Google Scholar 

  32. Page N et al (2011) HSC70 blockade by the therapeutic peptide P140 affects autophagic processes and endogenous MHCII presentation in murine lupus. Ann Rheum Dis 70(5):837–843

    Article  CAS  PubMed  Google Scholar 

  33. Yun HR et al (2020) Roles of autophagy in oxidative stress. Int J Mol Sci 21(9):3289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pandey AV et al (1999) Assay of β-hematin formation by malaria parasite. J Pharm Biomed Anal 20(1–2):203–207

    Article  CAS  PubMed  Google Scholar 

  35. Firoz A et al (2010) ContPro: a web tool for calculating amino acid contact distances in protein from 3D-structures at different distance threshold. Bioinformation 5(2):55

    Article  PubMed  PubMed Central  Google Scholar 

  36. BIOVIA DS (2016) Discovery studio modeling environment, release 2017, San Diego: DassaultSystèmes, 2016. https://3ds.com/products-services/biovia/products. Accessed 1 Sept 2016

  37. Morris GM et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kaplan W, Littlejohn TG (2001) Swiss-PDB viewer (deep view). Brief Bioinform 2(2):195–197

    Article  CAS  PubMed  Google Scholar 

  39. Anand P et al (2014) ABS–Scan: In silico alanine scanning mutagenesis for binding site residues in protein–ligand complex. F1000Research. https://doi.org/10.12688/f1000research.5165.2

    Article  PubMed  PubMed Central  Google Scholar 

  40. Schejter A, Lanir A, Epstein N (1976) Binding of hydrogen donors to horseradish peroxidase: a spectroscopic study. Arch Biochem Biophys 174(1):36–44

    Article  CAS  PubMed  Google Scholar 

  41. Bandyopadhyay U et al (1995) Irreversible inactivation of lactoperoxidase by mercaptomethylimidazole through generation of a thiyl radical: its use as a probe to study the active site. Biochem J 306(3):751–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hageman J, Kampinga HH (2009) Computational analysis of the human HSPH/HSPA/DNAJ family and cloning of a human HSPH/HSPA/DNAJ expression library. Cell Stress Chaperones 14(1):1–21

    Article  CAS  PubMed  Google Scholar 

  43. Deshmukh R, Trivedi V (2013) Pro-stimulatory role of methemoglobin in inflammation through hemin oxidation and polymerization. Inflamm Allergy Drug Targets (Formerly Curr Drug Targets-Inflamma Allergy)(Discontinued) 12(1):68–78

    CAS  Google Scholar 

  44. Santos TG, Martins VR, Hajj GNM (2017) Unconventional secretion of heat shock proteins in cancer. Int J Mol Sci 18(5):946

    Article  PubMed  PubMed Central  Google Scholar 

  45. Banesh S, Layek S, Trivedi V (2022) Hemin acts as CD36 ligand to activate down-stream signalling to disturb immune responses and cytokine secretion from macrophages. Immunol Lett 243:1–18

    Article  CAS  PubMed  Google Scholar 

  46. Banesh S, Ramakrishnan V, Trivedi V (2018) Mapping of phosphatidylserine recognition region on CD36 ectodomain. Arch Biochem Biophys 660:1–10

    Article  CAS  PubMed  Google Scholar 

  47. Makarska-Bialokoz M (2018) Interactions of hemin with bovine serum albumin and human hemoglobin: a fluorescence quenching study. Spectrochim Acta Part A Mol Biomol Spectrosc 193:23–32

    Article  ADS  CAS  Google Scholar 

  48. Owens CP et al (2012) Characterization of heme ligation properties of Rv0203, a secreted heme binding protein involved in Mycobacterium tuberculosis heme uptake. Biochemistry 51(7):1518–1531

    Article  CAS  PubMed  Google Scholar 

  49. Shimizu T et al (2019) Heme: emergent roles of heme in signal transduction, functional regulation and as catalytic centres. Chem Soc Rev 48(24):5624–5657

    Article  CAS  PubMed  Google Scholar 

  50. Chugh M et al (2013) Protein complex directs hemoglobin-to-hemozoin formation in Plasmodium falciparum. Proc Natl Acad Sci 110(14):5392–5397

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kouznetsov VV, Gómez-Barrio A (2009) Recent developments in the design and synthesis of hybrid molecules basedon aminoquinoline ring and their antiplasmodial evaluation. Eur J Med Chem 44(8):3091–3113

    Article  CAS  PubMed  Google Scholar 

  52. Trivedi V et al (2005) Purification and biochemical characterization of a heme containing peroxidase from the human parasite P. falciparum. Protein Exp Purif 41(1):154–161

    Article  CAS  Google Scholar 

  53. Trivedi V et al (2005) Clotrimazole inhibits hemoperoxidase of Plasmodiumfalciparum and induces oxidative stress: proposed antimalarial mechanism of clotrimazole. J Biol Chem 280(50):41129–41136

    Article  CAS  PubMed  Google Scholar 

  54. de Villiers KA, Egan TJ (2021) Heme detoxification in the malaria parasite: a target for antimalarial drug development. Acc Chem Res 54(11):2649–2659

    Article  PubMed  PubMed Central  Google Scholar 

  55. Oliveira MF et al (2000) Haemozoin formation in the midgut of the blood-sucking insect Rhodniusprolixus. FEBS Lett 477(1–2):95–98

    Article  CAS  PubMed  Google Scholar 

  56. Oliveira MF et al (2000) Haemozoin in Schistosoma mansoni. Mol Biochem Parasitol 111(1):217–221

    Article  CAS  PubMed  Google Scholar 

  57. Chen MM, Shi L, Sullivan DJ Jr (2001) Haemoproteus and Schistosoma synthesize heme polymers similar to Plasmodium hemozoin and β-hematin. Mol Biochem Parasitol 113(1):1–8

    Article  CAS  PubMed  Google Scholar 

  58. Gozzelino R, Jeney V, Soares MP (2010) Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol Toxicol 50(1):323–354

    Article  CAS  PubMed  Google Scholar 

  59. Jani D et al (2008) HDP—a novel heme detoxification protein from the Malaria parasite. PLoS Pathog 4(4):e1000053

    Article  PubMed  PubMed Central  Google Scholar 

  60. Jang HH et al (2004) Two enzymes in one: two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 117(5):625–635

    Article  CAS  PubMed  Google Scholar 

  61. Hong SH et al (2018) Functional switching of ascorbate peroxidase 2 of rice (OsAPX2) between peroxidase and molecular chaperone. Sci Rep 8(1):1–9

    Article  ADS  MathSciNet  Google Scholar 

  62. Rodriguez-Lopez JN, Smith AT, Thorneley RN (1996) Role of Arginine 38 in horseradish peroxidase: a critical residue for substrate binding and catalysis. J Biol Chem 271(8):4023–4030

    Article  CAS  PubMed  Google Scholar 

  63. Bandyopadhyay U, Adak S, Banerjee RK (1999) Role of active site residues in peroxidase catalysis: studies on horseradish peroxidase. Proc Indian Nat Sci Acad Part B Biol Sci 65(5):315–330

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Science and Technology (DST-SERB) grant to V.T. AKP acknowledges the financial support in the form of a fellowship from the Indian Institute of Technology- Guwahati, Assam, India. The authors also acknowledge Harm Kampinga for providing the HSPA8 clone.

Author information

Authors and Affiliations

Authors

Contributions

This work was carried out in collaboration between all authors. AKP, Performed Experiments; AKP and VT Analyzed the Results; AKP and VT wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Vishal Trivedi.

Ethics declarations

Conflict of interest

The Author(s) declare(s) that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3653 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, A.K., Trivedi, V. Role Transformation of HSPA8 to Heme-peroxidase After Binding Hemin to Catalyze Heme Polymerization. Protein J 43, 48–61 (2024). https://doi.org/10.1007/s10930-023-10167-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-023-10167-9

Keywords

Navigation