Skip to main content
Log in

A Review of Functional Characterization of Single Amino Acid Change Mutations in HNF Transcription Factors in MODY Pathogenesis

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Mutations in HNF transcription factor genes cause the most common subtypes of maturity-onset of diabetes of youth (MODY), a monogenic form of diabetes mellitus. Mutations in the HNF1-α, HNF4-α, and HNF1-β genes are primarily considered as the cause of MODY3, MODY1, and MODY5 subtypes, respectively. Although patients with different subtypes display similar symptoms, they may develop distinct diabetes-related complications and require different treatments depending on the type of the mutation. Genetic analysis of MODY patients revealed more than 400 missense/nonsense mutations in HNF1-α, HNF4-α, and HNF1-β genes, however only a small portion of them are functionally characterized. Evaluation of nonsense mutations are more direct as they lead to premature stop codons and mostly in mRNA decay or nonfunctional truncated proteins. However, interpretation of the single amino acid change (missense) mutation is not such definite, as effect of the variant may vary depending on the location and also the substituted amino acid. Mutations with benign effect on the protein function may not be the pathologic variant and further genetic testing may be required. Here, we discuss the functional characterization analysis of single amino acid change mutations identified in HNF1-α, HNF4-α, and HNF1-β genes and evaluate their roles in MODY pathogenesis. This review will contribute to comprehend HNF nuclear family-related molecular mechanisms and to develop more accurate diagnosis and treatment based on correct evaluation of pathologic effects of the variants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shields BM, Hicks S, Shepherd MH et al (2010) Maturity-onset diabetes of the young (MODY): How many cases are we missing? Diabetologia 53:2504–2508. https://doi.org/10.1007/s00125-010-1799-4

    Article  CAS  PubMed  Google Scholar 

  2. Schober E, Rami B, Grabert M et al (2009) Phenotypical aspects of maturity-onset diabetes of the young (MODY diabetes) in comparison with Type 2 diabetes mellitus (T2DM) in children and adolescents: experience from a large multicentre database. Diabet Med 26:466–473. https://doi.org/10.1111/j.1464-5491.2009.02720.x

    Article  CAS  PubMed  Google Scholar 

  3. Attiya K, Sahar F (2012) Maturity-onset diabetes of the young (MODY) genes: literature review. Clinical Practice 2012:4–11. https://doi.org/10.5923/j.cp.20120101.02

    Article  Google Scholar 

  4. Juszczak A, Owen K (2014) Identifying subtypes of monogenic diabetes Review. Diabetes Manage 4:49–61. https://doi.org/10.2217/DMT.13.59

    Article  CAS  Google Scholar 

  5. Siddiqui K, Musambil M, Nazir N (2015) Maturity onset diabetes of the young (MODY)-History, first case reports and recent advances. Gene 555:66–71. https://doi.org/10.1016/j.gene.2014.09.062

    Article  CAS  PubMed  Google Scholar 

  6. Fajans SS, Bell GI, Polonsky KS (2001) Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N Engl J Med 345:971–980. https://doi.org/10.1056/nejmra002168

    Article  CAS  PubMed  Google Scholar 

  7. Hansen T, Eiberg H, Rouard M et al (1997) Novel MODY3 mutations in the hepatocyte nuclear factor-1α gene: evidence for a hyperexcitability of pancreatic β-cells to intravenous secretagogues in a glucose-tolerant carrier of a P447L mutation. Diabetes 46:726–730. https://doi.org/10.2337/diab.46.4.726

    Article  CAS  PubMed  Google Scholar 

  8. Nammo T, Yamagata K, Tanaka T et al (2008) Expression of HNF-4α (MODY1), HNF-1β (MODY5), and HNF-1α (MODY3) proteins in the developing mouse pancreas. Gene Expr Patterns 8:96–106. https://doi.org/10.1016/j.modgep.2007.09.006

    Article  CAS  PubMed  Google Scholar 

  9. Roehlen N, Hilger H, Stock F et al (2018) 17q12 Deletion Syndrome as a Rare Cause for Diabetes Mellitus Type MODY5. J Clin Endocrinol Metab 103:3601–3610. https://doi.org/10.1210/jc.2018-00955

    Article  PubMed  Google Scholar 

  10. Yamagata K, Furuta H, Oda N et al (1996) Mutations in the hepatocyte nuclear factor-4α gene in maturity-onset diabetes of the young (MODY1). Nature 384:458–460. https://doi.org/10.1038/384458a0

    Article  CAS  PubMed  Google Scholar 

  11. Peixoto-Barbosa R, Reis AF, Giuffrida FMA (2020) Update on clinical screening of maturity-onset diabetes of the young (MODY). Diabetol Metab Syndr 12:50. https://doi.org/10.1186/s13098-020-00557-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Delvecchio M, Pastore C, Giordano P (2020) Treatment Options for MODY Patients: A Systematic Review of Literature. Diabetes Therapy 11:1667–1685. https://doi.org/10.1007/s13300-020-00864-4

    Article  PubMed  PubMed Central  Google Scholar 

  13. Urakami T (2019) Maturity-onset diabetes of the young (MODY): current perspectives on diagnosis and treatment. Diabetes Metab Syndrome Obes 12:1047–1056

    Article  CAS  Google Scholar 

  14. Morita K, Saruwatari J, Tanaka T et al (2017) Common variants of HNF1A gene are associated with diabetic retinopathy and poor glycemic control in normal-weight Japanese subjects with type 2 diabetes mellitus. J Diabetes Complicat 31:483–488. https://doi.org/10.1016/j.jdiacomp.2016.06.007

    Article  Google Scholar 

  15. Flannick J, Beer NL, Bick AG et al (2013) Assessing the phenotypic effects in the general population of rare variants in genes for a dominant Mendelian form of diabetes. Nat Genet 45:1380–1387. https://doi.org/10.1038/ng.2794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Malikova J, Kaci A, Dusatkova P et al (2020) Functional analyses of hnf1a-mody variants refine the interpretation of identified sequence variants. J Clin Endocrinol Metab 105:E1377–E1386. https://doi.org/10.1210/clinem/dgaa051

    Article  Google Scholar 

  17. Althari S, Najmi LA, Bennett AJ et al (2020) Unsupervised clustering of missense variants in HNF1A using multidimensional functional data aids clinical interpretation. Am J Hum Genet 107:670–682. https://doi.org/10.1016/j.ajhg.2020.08.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cereghini S (1996) Liver-enriched transcription factors and hepatocyte differentiation. FASEB J 10:267–282. https://doi.org/10.1096/fasebj.10.2.8641560

    Article  CAS  PubMed  Google Scholar 

  19. Lau HH, Ng NHJ, Loo LSW et al (2018) The molecular functions of hepatocyte nuclear factors—in and beyond the liver. J Hepatol 68:1033–1048. https://doi.org/10.1016/j.jhep.2017.11.026

    Article  CAS  PubMed  Google Scholar 

  20. Ryffel GU (2001) Mutations in the human genes encoding the transcription factors of the hepatocyte nuclear factor (HNF)1 and HNF4 families: functional and pathological consequences. J Mol Endocrinol 27:11–29. https://doi.org/10.1677/jme.0.0270011

    Article  CAS  PubMed  Google Scholar 

  21. Galán M, García-Herrero CM, Azriel S et al (2011) Differential effects of HNF-1α mutations associated with familial young-onset diabetes on target gene regulation. Mol Med 17:256–265. https://doi.org/10.2119/molmed.2010.00097

    Article  CAS  PubMed  Google Scholar 

  22. Kim EK, Lee JS, Il CH et al (2014) Identification and functional characterization of P159L mutation in HNF1B in a family with maturity-onset diabetes of the young 5 (MODY5). Genomics Inform 12:240. https://doi.org/10.5808/gi.2014.12.4.240

    Article  PubMed  PubMed Central  Google Scholar 

  23. Navas MA, Munoz-Elias EJ, Kim J et al (1999) Functional characterization of the MODY1 gene mutations HNF4(R127W), HNF4(V255M), and HNF4(E276Q). Diabetes 48:1459–1465. https://doi.org/10.2337/diabetes.48.7.1459

    Article  CAS  PubMed  Google Scholar 

  24. Lee SS, Cha E-Y, Jung H-J et al (2008) Genetic polymorphism of hepatocyte nuclear factor-4α influences human cytochrome P450 2D6 activity. Hepatology 48:635–645. https://doi.org/10.1002/hep.22396

    Article  CAS  PubMed  Google Scholar 

  25. Fang B, Mane-Padros D, Bolotin E et al (2012) Identification of a binding motif specific to HNF4 by comparative analysis of multiple nuclear receptors. Nucleic Acids Res 40:5343–5356. https://doi.org/10.1093/nar/gks190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Singh P, Tung SP, Han EH et al (2019) Dimerization defective MODY mutations of hepatocyte nuclear factor 4α. Mutat Res Fundam Mol Mech Mutagen 814:1–6. https://doi.org/10.1016/j.mrfmmm.2019.01.002

    Article  CAS  Google Scholar 

  27. Thomas H, Badenberg B, Bulman M et al (2002) Evidence for haploinsufficiency of the human HNF1α gene revealed by functional characterization of MODY3-associated mutations. Biol Chem 383:1691–1700. https://doi.org/10.1515/BC.2002.190

    Article  CAS  PubMed  Google Scholar 

  28. Uhlén M, Fagerberg L, Hallström BM et al (2015) Tissue-based map of the human proteome. Science. https://doi.org/10.1126/science.1260419

    Article  PubMed  Google Scholar 

  29. Juszczak A, Gilligan LC, Hughes BA et al (2020) Altered cortisol metabolism in individuals with HNF1A-MODY. Clin Endocrinol 93:269–279. https://doi.org/10.1111/cen.14218

    Article  CAS  Google Scholar 

  30. Scherer SE, Muzny DM, Buhay CJ et al (2006) The finished DNA sequence of human chromosome 12. Nature 440:346–351. https://doi.org/10.1038/nature04569

    Article  CAS  PubMed  Google Scholar 

  31. Anik A, Çatli G, Abaci A, Böber E (2015) Maturity-onset diabetes of the young (MODY): an update. J Pediatr Endocrinol Metab 28:251–263

    Article  CAS  PubMed  Google Scholar 

  32. Radha V, Ek J, Anuradha S et al (2009) Identification of novel variants in the hepatocyte nuclear factor-1α gene in South Indian patients with maturity onset diabetes of young. J Clin Endocrinol Metab 94:1959–1965. https://doi.org/10.1210/jc.2008-2371

    Article  CAS  PubMed  Google Scholar 

  33. Awa WL, Thon A, Raile K et al (2011) Genetic and clinical characteristics of patients with HNF1A gene variations from the German-Austrian DPV database. Eur J Endocrinol 164:513–520. https://doi.org/10.1530/EJE-10-0842

    Article  CAS  PubMed  Google Scholar 

  34. Balamurugan K, Bjørkhaug L, Mahajan S et al (2016) Structure–function studies of HNF1A (MODY3) gene mutations in South Indian patients with monogenic diabetes. Clin Genet 90:486–495. https://doi.org/10.1111/cge.12757

    Article  CAS  PubMed  Google Scholar 

  35. Bjørkhaug L, Bratland A, Njølstad PR, Molven A (2005) Functional dissection of the HNF-1alpha transcription factor: a study on nuclear localization and transcriptional activation. DNA Cell Biol 24:661–669. https://doi.org/10.1089/dna.2005.24.661

    Article  PubMed  Google Scholar 

  36. Colclough K, Bellanne-Chantelot C, Saint-Martin C et al (2013) Mutations in the genes encoding the transcription factors hepatocyte nuclear factor 1 alpha and 4 alpha in maturity-onset diabetes of the young and Hyperinsulinemic Hypoglycemia. Hum Mutat 34:669–685. https://doi.org/10.1002/humu.22279

    Article  CAS  PubMed  Google Scholar 

  37. Ikema T, Shimajiri Y, Komiya I et al (2002) Identification of three new mutations of the HNF-1α gene in Japanese MODY families. Diabetologia 45:1713–1718. https://doi.org/10.1007/s00125-002-0972-9

    Article  CAS  PubMed  Google Scholar 

  38. Sneha P, Thirumal KD, George PDC et al (2017) Determining the role of missense mutations in the POU domain of HNF1A that reduce the DNA-binding affinity: a computational approach. PLoS ONE 12:e0174953–e0174953. https://doi.org/10.1371/journal.pone.0174953

    Article  CAS  Google Scholar 

  39. Mcguffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server

  40. Buchan DWA, Jones DT (2019) The PSIPRED Protein Analysis Workbench: 20 years on. Nucleic Acids Res 47:W402–W407. https://doi.org/10.1093/nar/gkz297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Narayana N, Phillips NB, Hua QX et al (2006) Diabetes Mellitus due to misfolding of a β-cell transcription factor: stereospecific frustration of a Schellman Motif in HNF-1α. J Mol Biol 362:414–429. https://doi.org/10.1016/j.jmb.2006.06.086

    Article  CAS  PubMed  Google Scholar 

  42. Chi YI, Frantz JD, Oh BC et al (2002) Diabetes mutations delineate an atypical POU domain in HNF-1α. Mol Cell 10:1129–1137. https://doi.org/10.1016/S1097-2765(02)00704-9

    Article  CAS  PubMed  Google Scholar 

  43. Alvelos MI, Gonçalves CI, Coutinho E et al (2020) Maturity-onset diabetes of the young (MODY) in Portugal: novel GCK, HNFA1 and HNFA4 mutations. J Clin Med 9:288. https://doi.org/10.3390/jcm9010288

    Article  CAS  PubMed Central  Google Scholar 

  44. Stenson PD, Mort M, Ball EV et al (2020) The Human Gene Mutation Database (HGMD®): optimizing its use in a clinical diagnostic or research setting. Hum Genet 139:1197–1207. https://doi.org/10.1007/s00439-020-02199-3

    Article  PubMed  PubMed Central  Google Scholar 

  45. Narayana N, Hua QX, Weiss MA (2001) The dimerization domain of HNF-1α: Structure and plasticity of an intertwined four-helix bundle with application to diabetes mellitus. J Mol Biol 310:635–658. https://doi.org/10.1006/jmbi.2001.4780

    Article  CAS  PubMed  Google Scholar 

  46. Luscombe NM, Laskowski RA, Thornton JM (2001) Amino acid-base interactions: a three-dimensional analysis of protein-DNA interactions at an atomic level. Nucleic Acids Res 29:2860–2874. https://doi.org/10.1093/nar/29.13.2860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bjørkhaug L, Sagen JV, Thorsby P et al (2003) Hepatocyte nuclear factor-1α gene mutations and diabetes in Norway. J Clin Endocrinol Metab 88:920–931. https://doi.org/10.1210/jc.2002-020945

    Article  CAS  PubMed  Google Scholar 

  48. Ban N, Yamada Y, Someya Y et al (2002) Hepatocyte nuclear factor-1α recruits the transcriptional co-activator p300 on the GLUT2 gene promoter. Diabetes 51:1409–1418. https://doi.org/10.2337/diabetes.51.5.1409

    Article  CAS  PubMed  Google Scholar 

  49. Fareed FMA, Korulu S, Özbil M, Çapan ÖY (2021) HNF1A-MODY mutations in nuclear localization signal impair HNF1A-import receptor KPNA6 interactions. Protein J. https://doi.org/10.1007/s10930-020-09959-0

    Article  PubMed  Google Scholar 

  50. Triggs-Raine BL, Kirkpatrick RD, Kelly SL et al (2002) HNF-1α G319S, a transactivation-deficient mutant, is associated with altered dynamics of diabetes onset in an Oji-Cree community. Proc Natl Acad Sci USA 99:4614–4619. https://doi.org/10.1073/pnas.062059799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vaxillaire M, Rouard M, Yamagata K et al (1997) Identification of nine novel mutations in the hepatocyte nuclear factor 1 alpha gene associated with maturity-onset diabetes of the young (MODY3). Hum Mol Genet 6:583–586. https://doi.org/10.1093/hmg/6.4.583

    Article  CAS  PubMed  Google Scholar 

  52. Yamada S, Tomura H, Nishigori H et al (1999) Identification of mutations in the hepatocyte nuclear factor-1α gene in Japanese subjects with early-onset NIDDM and functional analysis of the mutant proteins. Diabetes 48:645–648. https://doi.org/10.2337/diabetes.48.3.645

    Article  CAS  PubMed  Google Scholar 

  53. Xu JY, Chan V, Zhang WY et al (2002) Mutations in the hepatocyte nuclear factor-1α gene in Chinese MODY families: prevalence and functional analysis. Diabetologia 45:744–746. https://doi.org/10.1007/s00125-002-0814-9

    Article  CAS  PubMed  Google Scholar 

  54. Holmkvist J, Cervin C, Lyssenko V et al (2006) Common variants in HNF-1 α and risk of type 2 diabetes. Diabetologia 49:2882–2891. https://doi.org/10.1007/s00125-006-0450-x

    Article  CAS  PubMed  Google Scholar 

  55. Cervin C, Orho-Melander M, Ridderstråle M et al (2002) Characterisation of a naturally occurring mutation “L107I” in the HNF1α “MODY3” gene. Diabetologia 45:1703–1708. https://doi.org/10.1007/s00125-002-0977-4

    Article  CAS  PubMed  Google Scholar 

  56. Najmi LA, Aukrust I, Flannick J et al (2017) Functional investigations of HNF1A identify rare variants as risk factors for type 2 diabetes in the general population. Diabetes 66:335–346. https://doi.org/10.2337/db16-0460

    Article  CAS  PubMed  Google Scholar 

  57. Vaxillaire M, Abderrahmani A, Boutin P et al (1999) Anatomy of a homeoprotein revealed by the analysis of human MODY3 mutations. J Biol Chem 274:35639–35646. https://doi.org/10.1074/jbc.274.50.35639

    Article  CAS  PubMed  Google Scholar 

  58. Rozenkova K, Malikova J, Nessa A et al (2015) High incidence of heterozygous ABCC8 and HNF1A mutations in Czech patients with congenital hyperinsulinism. J Clin Endocrinol Metab 100:E1540–E1549. https://doi.org/10.1210/jc.2015-2763

    Article  PubMed  Google Scholar 

  59. Yoshiuchi I, Yamagata K, Yang Q et al (1999) Three new mutations in the hepatocyte nuclear factor-1α gene in Japanese subjects with diabetes mellitus: clinical features and functional characterization. Diabetologia 42:621–626. https://doi.org/10.1007/s001250051204

    Article  CAS  PubMed  Google Scholar 

  60. Plengvidhya N, Boonyasrisawat W, Chongjaroen N et al (2009) Mutations of maturity-onset diabetes of the young (MODY) genes in Thais with early-onset type 2 diabetes mellitus: ORIGINAL ARTICLE. Clin Endocrinol 70:847–853. https://doi.org/10.1111/j.1365-2265.2008.03397.x

    Article  CAS  Google Scholar 

  61. Bjorkhaug L, Ye H, Horikawa Y et al (2000) MODY associated with two novel hepatocyte nuclear factor-1α loss-of-function mutations (P112L and Q466X). Biochem Biophys Res Commun 279:792–798. https://doi.org/10.1006/bbrc.2000.4024

    Article  CAS  PubMed  Google Scholar 

  62. Deloukas P, Matthews LH, Ashurst J et al (2001) The DNA sequence and comparative analysis of human chromosome 20. Nature 414:865–871. https://doi.org/10.1038/414865a

    Article  CAS  PubMed  Google Scholar 

  63. Huang J, Levitsky LL, Rhoads DB (2009) Novel P2 promoter-derived HNF4α isoforms with different N-terminus generated by alternate exon insertion. Exp Cell Res 315:1200–1211. https://doi.org/10.1016/j.yexcr.2009.01.004

    Article  CAS  PubMed  Google Scholar 

  64. Ko HL, Zhuo Z, Chee E, Correspondence R (2019) HNF4α; combinatorial isoform heterodimers activate distinct gene targets that differ from their corresponding homodimers. Cell Rep 26:2549-2557.e3. https://doi.org/10.1016/j.celrep.2019.02.033

    Article  CAS  PubMed  Google Scholar 

  65. Tanaka T, Jiang S, Hotta H et al (2006) Dysregulated expression of P1 and P2 promoter-driven hepatocyte nuclear factor-4α in the pathogenesis of human cancer. J Pathol 208:662–672. https://doi.org/10.1002/path.1928

    Article  CAS  PubMed  Google Scholar 

  66. Fukushima-Uesaka H, Saito Y, Maekawa K et al (2006) Novel genetic variations and haplotypes of hepatocyte nuclear factor 4alpha (HNF4A) found in Japanese type II diabetic patients. Drug Metab Pharmacokinet 21:337–346. https://doi.org/10.2133/dmpk.21.337

    Article  CAS  PubMed  Google Scholar 

  67. Evans RM, Mangelsdorf DJ (2014) Nuclear receptors, RXR, and the big bang. Cell 157:255–266. https://doi.org/10.1016/j.cell.2014.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Marchesin V, Pérez-Martí A, Le Meur G et al (2019) Molecular basis for autosomal-dominant Renal Fanconi Syndrome caused by HNF4A. Cell Rep 29:4407-4421.e5. https://doi.org/10.1016/j.celrep.2019.11.066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sladek FM, Zhong W, Lai E, Darnell JE (1990) Liver-enriched transcription factor HNF-4 is a novel member of the steroid hormone receptor superfamily. Genes Dev 4:2353–2365. https://doi.org/10.1101/gad.4.12b.2353

    Article  CAS  PubMed  Google Scholar 

  70. Costa RH, Kalinichenko VV, Holterman AXL, Wang X (2003) Transcription factors in liver development, differentiation, and regeneration. Hepatology 38:1331–1347. https://doi.org/10.1016/j.hep.2003.09.034

    Article  CAS  PubMed  Google Scholar 

  71. Dhe-Paganon S, Duda K, Iwamoto M et al (2002) Crystal structure of the HNF4α ligand binding domain in complex with endogenous fatty acid ligand. J Biol Chem 277:37973–37976. https://doi.org/10.1074/jbc.C200420200

    Article  CAS  PubMed  Google Scholar 

  72. Chandra V, Huang P, Potluri N et al (2013) Multidomain integration in the structure of the HNF-4α nuclear receptor complex. Nature 495:394–398. https://doi.org/10.1038/nature11966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lu P, Rha GB, Melikishvili M et al (2008) Structural basis of natural promoter recognition by a unique nuclear receptor, HNF4α: diabetes gene product. J Biol Chem 283:33685–33697. https://doi.org/10.1074/jbc.M806213200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Han EH, Singh P, Lee IK et al (2019) ErbB3-binding protein 1 (EBP1) represses HNF4α-mediated transcription and insulin secretion in pancreatic β-cells. J Biol Chem 294:13983–13994. https://doi.org/10.1074/jbc.RA119.009558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Clemente M, Vargas A, Ariceta G et al (2017) Hyperinsulinaemic hypoglycaemia, renal Fanconi syndrome and liver disease due to a mutation in the HNF4A gene. Endocrinol Diabetes Metab Case Rep. https://doi.org/10.1530/edm-16-0133

    Article  PubMed  PubMed Central  Google Scholar 

  76. Liu J, Shen Q, Li G, Xu H (2018) HNF4A-related Fanconi syndrome in a Chinese patient: a case report and review of the literature. J Med Case Rep 12:203. https://doi.org/10.1186/s13256-018-1740-x

    Article  PubMed  PubMed Central  Google Scholar 

  77. Oxombre B, Kouach M, Moerman E et al (2004) The G115S mutation associated with maturity-onset diabetes of the young impairs hepatocyte nuclear factor 4α activities and introduces a PKA phosphorylation site in its DNA-binding domain. Biochem J 383:573–580. https://doi.org/10.1042/BJ20040473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sun Z, Xu Y (2020) Nuclear receptor coactivators (NCOAs) and corepressors (NCORs) in the brain. Endocrinology 161:1–12. https://doi.org/10.1210/endocr/bqaa083

    Article  Google Scholar 

  79. Eeckhoute J, Formstecher P, Laine B (2004) Hepatocyte nuclear factor 4α enhances the hepatocyte nuclear factor 1α-mediated activation of transcription. Nucleic Acids Res 32:2586–2593. https://doi.org/10.1093/nar/gkh581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pearson ER, Pruhova S, Tack CJ et al (2005) Molecular genetics and phenotypic characteristics of MODY caused by hepatocyte nuclear factor 4α mutations in a large European collection. Diabetologia 48:878–885. https://doi.org/10.1007/s00125-005-1738-y

    Article  CAS  PubMed  Google Scholar 

  81. Taniguchi H, Fujimoto A, Kono H et al (2018) Loss-of-function mutations in Zn-finger DNA-binding domain of HNF4A cause aberrant transcriptional regulation in liver cancer. Oncotarget 9:26144–26156

    Article  Google Scholar 

  82. Oxombre B, Moerman E, Eeckhoute J et al (2002) Mutations in hepatocyte nuclear factor 4α (HNF4α) gene associated with diabetes result in greater loss of HNF4α function in pancreatic β-cells than in nonpancreatic β-cells and in reduced activation of the apolipoprotein CIII promoter in hepatic cells. J Mol Med 80:423–430. https://doi.org/10.1007/s00109-002-0340-8

    Article  CAS  PubMed  Google Scholar 

  83. Yang Y, Zhou T-C, Liu Y-Y et al (2016) Identification of HNF4A Mutation p. T130I and HNF1A Mutations p.I27L and p.S487N in a Han Chinese Family with Early-Onset Maternally Inherited Type 2 Diabetes. J Diabetes Res 2016:1–8. https://doi.org/10.1155/2016/3582616

    Article  CAS  Google Scholar 

  84. Ek J, Rose CS, Jensen DP et al (2005) The functional Thr130Ile and Val255Met polymorphisms of the hepatocyte nuclear factor-4α (HNF4A): gene associations with type 2 diabetes or altered β-cell function among danes. J Clin Endocrinol Metab 90:3054–3059. https://doi.org/10.1210/jc.2004-2159

    Article  CAS  PubMed  Google Scholar 

  85. Adalat S, Woolf AS, Johnstone KA et al (2009) HNF1B mutations associate with hypomagnesemia and renal magnesium wasting. J Am Soc Nephrol 20:1123–1131. https://doi.org/10.1681/ASN.2008060633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bártů M, Hojný J, Hájková N et al (2020) Analysis of expression, epigenetic, and genetic changes of HNF1B in 130 kidney tumours. Sci Rep 10:1–11. https://doi.org/10.1038/s41598-020-74059-z

    Article  CAS  Google Scholar 

  87. Zody MC, Garber M, Adams DJ et al (2006) DNA sequence of human chromosome 17 and analysis of rearrangement in the human lineage. Nature 440:1045–1049. https://doi.org/10.1038/nature04689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chan SC, Zhang Y, Shao A et al (2018) Mechanism of fibrosis in HNF1B-related autosomal dominant tubulointerstitial kidney disease. J Am Soc Nephrol 29:2493–2509. https://doi.org/10.1681/ASN.2018040437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ferrè S, Igarashi P (2019) New insights into the role of HNF-1β in kidney (patho)physiology. Pediatr Nephrol 34:1325–1335. https://doi.org/10.1007/s00467-018-3990-7

    Article  PubMed  Google Scholar 

  90. Nakayama M, Nozu K, Goto Y et al (2010) HNF1B alterations associated with congenital anomalies of the kidney and urinary tract. Pediatr Nephrol 25:1073–1079. https://doi.org/10.1007/s00467-010-1454-9

    Article  PubMed  Google Scholar 

  91. Painter JN, O’Mara TA, Batra J et al (2015) Fine-mapping of the HNF1B multicancer locus identifies candidate variants that mediate endometrial cancer risk. Hum Mol Genet 24:1478–1492. https://doi.org/10.1093/hmg/ddu552

    Article  CAS  PubMed  Google Scholar 

  92. Clissold RL, Hamilton AJ, Hattersley AT et al (2015) HNF1B-associated renal and extra-renal disease—an expanding clinical spectrum. Nat Rev Nephrol 11:102–112. https://doi.org/10.1038/nrneph.2014.232

    Article  CAS  PubMed  Google Scholar 

  93. Heidet L, Decramer S, Pawtowski A et al (2010) Spectrum of HNF1B mutations in a large cohort of patients who harbor renal diseases. Clin J Am Soc Nephrol 5:1079–1090. https://doi.org/10.2215/CJN.06810909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hojny J, Bartu M, Krkavcova E et al (2020) Identification of novel HNF1B mRNA splicing variants and their qualitative and semi-quantitative profile in selected healthy and tumour tissues. Sci Rep 10:1–11. https://doi.org/10.1038/s41598-020-63733-x

    Article  CAS  Google Scholar 

  95. Lu P, Geun BR, Chi YI (2007) Structural basis of disease-causing mutations in hepatocyte nuclear factor 1β. Biochemistry 46:12071–12080. https://doi.org/10.1021/bi7010527

    Article  CAS  PubMed  Google Scholar 

  96. Barbacci E, Chalkiadaki A, Masdeu C et al (2004) HNF1β/TCF2 mutations impair transactivation potential through altered co-regulator recruitment. Hum Mol Genet 13:3139–3149. https://doi.org/10.1093/hmg/ddh338

    Article  CAS  PubMed  Google Scholar 

  97. Edghill EL, Bingham C, Ellard S, Hattersley AT (2006) Mutations in hepatocyte nuclear factor-1β and their related phenotypes. J Med Genet 43:84–90. https://doi.org/10.1136/jmg.2005.032854

    Article  CAS  PubMed  Google Scholar 

  98. Kitanaka S, Miki Y, Hayashi Y, Igarashi T (2004) Promoter-Specific Repression of hepatocyte nuclear factor (HNF)-1β and HNF-1α transcriptional activity by an HNF-1β missense mutant associated with type 5 maturity-onset diabetes of the young with hepatic and biliary manifestations. J Clin Endocrinol Metab 89:1369–1378. https://doi.org/10.1210/jc.2003-031308

    Article  CAS  PubMed  Google Scholar 

  99. Okonechnikov K, Golosova O, Fursov M (2012) Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28:1166–1167. https://doi.org/10.1093/bioinformatics/bts091

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özlem Yalçın Çapan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çubuk, H., Yalçın Çapan, Ö. A Review of Functional Characterization of Single Amino Acid Change Mutations in HNF Transcription Factors in MODY Pathogenesis. Protein J 40, 348–360 (2021). https://doi.org/10.1007/s10930-021-09991-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-021-09991-8

Keywords

Navigation