Skip to main content
Log in

An Ensemble Classifier of Support Vector Machines Used to Predict Protein Structural Classes by Fusing Auto Covariance and Pseudo-Amino Acid Composition

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The purpose of this article is to identify protein structural classes by using support vector machine (SVM) ensemble classifier, which is very efficient in enhancing prediction performance. Firstly, auto covariance (AC) and pseudo-amino acid composition (PseAAC) were used in protein representation. AC focuses on adjacent effects and PseAA composition takes sequence order patterns into account. Secondly, SVMs were trained on the datasets represented by different descriptors. The last, ensemble classifier, which constructed on the individual classifiers through a voting strategy, gave the final prediction results. Meanwhile, very promising prediction accuracy 93.14% was obtained by Jackknife test. The experimental results showed that the ensemble system can improve the prediction performance greatly and generate more stable and safer predictors. The current method featured by fusing the protein primary sequence information transferred by AC and described by protein PseAA composition may play an important complementary role in other related applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AC:

Auto covariance

SVM:

Support vector machine

PseAA:

Pseudo-amino acid

References

  1. Baldi P, Brunak S, Frasconi P, Soda G, Pollastri G (1999) Bioinformatics 15(11):937–946

    Article  CAS  Google Scholar 

  2. Cai YD, Liu XJ, Xu XB, Chou KC (2002) Comput Chem 26:293–296

    Article  CAS  Google Scholar 

  3. Cai YD, Feng KY, Lu WC, Chou KC (2006) J Theor Biol 238:172–176

    Article  CAS  Google Scholar 

  4. Charton M, Charton BI (1982) J Theor Biol 99(4):629–644

    Article  CAS  Google Scholar 

  5. Chang CC, Lin CJ. LIBSVM: a library for support vector machines, Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

  6. Chen C, Tian YX, Zou XY, Cai PX, Mo JY (2006) J Theor Biol 243:444–448

    Article  CAS  Google Scholar 

  7. Chou KC (2001) Proteins 43:246–255

    Article  CAS  Google Scholar 

  8. Chou KC, Cai YD (2003) J Cell Biochem 90:1250–1260

    Article  CAS  Google Scholar 

  9. Chou KC (2005) Bioinformatics 21(1):10–19

    Article  CAS  Google Scholar 

  10. Chou KC (1999) Biochem Biophys Res Commun 264:216–224

    Article  CAS  Google Scholar 

  11. Chou KC, Shen HB (2007) Biochem Biophys Res Commun 360:339–345

    Article  CAS  Google Scholar 

  12. Doytchinova IA, Flower DR (2007) BMC Bioinformatics 8:4

    Article  Google Scholar 

  13. Grantham R (1974) Science 185:862–864

    Article  CAS  Google Scholar 

  14. Guo YZ, Yu LZ, Wen ZN, Li ML (2008) Nucleic Acids Res 39(9):3025–3030

    Article  Google Scholar 

  15. Guo YZ, Li ML, Lu MC, Wen ZN, Huang ZT (2006) Proteins 65:55–60

    Article  CAS  Google Scholar 

  16. Hopp TP, Woods KR (1981) Proc Natl Acad 78:3824–3828

    Article  CAS  Google Scholar 

  17. Krigbaum WR, Komoriya A (1979) Biochim Biophys Acta 576:204–228

    CAS  Google Scholar 

  18. Levitt M, Chothia C (1976) Nature 261:552–558

    Article  CAS  Google Scholar 

  19. Liu LR, Fang YP, Li ML, Wang CC (2009) Protein J 28:175–181

    Article  CAS  Google Scholar 

  20. Lin H, Li QZ (2007) J Comput Chem 28(9):1463–1466

    Article  CAS  Google Scholar 

  21. Nanni L, Lumini A (2008) Expert Syst Appl Doi:10.1016/j.eswa.2008.09.036

  22. Riis SK, Krogh A (1996) J Comput Biol 3:163–183

    Article  CAS  Google Scholar 

  23. Rose GD, Geselowitz AR, Lesser GJ, Lee RH, Zehfus MH (1985) Science 229:834–838

    Article  CAS  Google Scholar 

  24. Shen HB, Yang J, Liu XJ, Chou KC (2005) Biochem Biophys Res Commun 334:577–581

    Article  CAS  Google Scholar 

  25. Shen HB, Chou KC (2007) Peds 20(11):561–567

    CAS  Google Scholar 

  26. Shen HB, Chou KC (2006) Bioinformatics 22(14):1717–1722

    Article  CAS  Google Scholar 

  27. Shen HB, Yang J, Chou KC (2006) J Theor Biol 240:9–13

    Article  CAS  Google Scholar 

  28. Tanford C (1962) J Am Chem 84:4240–4274

    Article  CAS  Google Scholar 

  29. Vapnik V (1995) The nature of statistical learning theory. Springer-Verlag, New York

    Google Scholar 

  30. Vapnik V (1998) Statistical learning theory. Wiley, New York

    Google Scholar 

  31. Wold S, Jonsson J, Sjörström M, Sandberg M, Rannar S (1993) Anal Chim Acta 277:239–253

    Article  CAS  Google Scholar 

  32. Xiao X, Shao SH, Huang ZD, Chou KC (2006) J Comput Chem 27:478–482

    Article  Google Scholar 

  33. Zhou XB, Chen C, Li ZC, Zou XY (2007) J Theor Biol 248:546–551

    Article  CAS  Google Scholar 

  34. Zhou P, Tian FF, Li B, Wu SR, Li ZL (2006) Acta Chimi Sin 64:691–697

    CAS  Google Scholar 

  35. Zhang TL, Ding YS (2007) Amino Acids 33:623–629

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This article was supported by the National Natural Science Foundation of China (No. 20775052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng-Long Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J., Li, ML., Yu, LZ. et al. An Ensemble Classifier of Support Vector Machines Used to Predict Protein Structural Classes by Fusing Auto Covariance and Pseudo-Amino Acid Composition. Protein J 29, 62–67 (2010). https://doi.org/10.1007/s10930-009-9222-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-009-9222-z

Keywords

Navigation