Skip to main content
Log in

l-Arginine Suppresses Aggregation of Recombinant Growth Hormones in Refolding Process from E. coli Inclusion Bodies

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

l-Arginine was used to suppress the aggregation of recombinant mink and porcine growth hormones in the refolding process from E. coli inclusion bodies by solubilization–dilution protocol at high protein concentration and pH 8.0. The influence of l-arginine concentration on the renaturation yield of both proteins was investigated. l-Arginine effectively suppressed the precipitation of growth hormones during dilution, but did not inhibit soluble oligomers formation. The results of mink and porcine growth hormones purification from 4 g of biomass are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

SEC:

Size exclusion chromatography

mGH:

Recombinant mink growth hormone

pGH:

Recombinant porcine growth hormone

hGH:

Recombinant human growth hormone

References

  1. Middelberg AP (2002) Trends Biotechnol 20:437–443

    Article  CAS  Google Scholar 

  2. Panda AK (2003) Adv Biochem Eng Biotechnol 85:43–93

    CAS  Google Scholar 

  3. Tsumoto K, Ejima D, Kumagai I, Arakawa T (2003) Protein Expr Purif 28:1–8

    Article  CAS  Google Scholar 

  4. Fahnert B, Lilie H, Neubauer P (2004) Adv Biochem Eng Biotechnol 89:93–142

    CAS  Google Scholar 

  5. Mayer M, Buchner J (2004) Methods Mol Med 94:239–254

    CAS  Google Scholar 

  6. Singh SM, Panda AK (2005) J Biosci Bioeng 99:303–310

    Article  CAS  Google Scholar 

  7. De Bernardez Clark E (1998) Curr Opin Biotechnol 9:157–163

    Article  Google Scholar 

  8. Lilie H, Schwarz E, Rudolph R (1998) Curr Opin Biotechnol 9:497–501

    Article  CAS  Google Scholar 

  9. De Bernardez Clark E, Schwarz E, Rudolph R (1999) Methods Enzymol 309:217–236

    Article  Google Scholar 

  10. Arakawa T, Tsumoto K, Kita Y, Chang B, Ejima D (2007) Amino acids. DOI: 10.1007/s00726-007-0506-3

  11. Arakawa T, Tsumoto K (2003) Biochem Biophys Res Commun 304:148–152

    Article  CAS  Google Scholar 

  12. Karuppiah N, Sharma A (1995) Biochem Biophys Res Commun 211:60–66

    Article  CAS  Google Scholar 

  13. Sharma L, Sharma A (2001) Eur J Biochem 268:2456–2463

    Article  CAS  Google Scholar 

  14. Desai A, Lee C, Sharma L, Sharma A (2006) Biochimie 88:1435–1445

    Article  CAS  Google Scholar 

  15. Bar J, Golbik R, Hubner G, Kopperschlager G (2000) Biochemistry 39:6960–6968

    Article  CAS  Google Scholar 

  16. Khodarahmi R, Yazdanparast R (2004) Biochim Biophys Acta 1674:175–181

    CAS  Google Scholar 

  17. Rozema D, Gellman SH (1995) J Am Chem Soc 117:2373–2374

    Article  CAS  Google Scholar 

  18. Rozema D, Gellman SH (1996) J Biol Chem 271:3478–3487

    Article  CAS  Google Scholar 

  19. Yazdanparast R, Khodagholi F, Khodarahmi R (2005) Int J Biol Macromol 35:257–263

    Article  CAS  Google Scholar 

  20. Kim SH, Zhou HM, Yan YB (2007) Int J Biol Macromol 40:76–82

    Article  CAS  Google Scholar 

  21. Baranauskaite L, Sereikaite J, Gedminiene G, Bumeliene Z, Bumelis VA (2005) Biocatal Biotransfom 23:185–189

    Article  CAS  Google Scholar 

  22. Sereikaite J, Statkute A, Morkunas M, Radzevicius K, Borromeo V, Secchi C, Bumelis VA (2007) Appl Microbiol Biotechnol 74:316–323

    Article  CAS  Google Scholar 

  23. Bentle LA, Mitchell JW, Storrs SB (1987) US Patent 4,652,630

  24. Laemmli UK (1970) Nature 227:680–685

    Article  CAS  Google Scholar 

  25. Bradford MM (1976) Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  26. Sereikaite J, Bumelis V-A (2006) Biologija 3:67–69

    Google Scholar 

  27. Violand BN, Schlittler MR, Toren PC, Siegel NR (1990) J Protein Chem 9:109–117

    Article  CAS  Google Scholar 

  28. Becker GW, Tackitt PM, Bromer WW, Lefeber DS, Riggin RM (1988) Biotechnol Appl Biochem 28:119–124

    Google Scholar 

  29. Hancock WS, Canova-Devis E, Chloupek RC, Wu SL, Baldonado IP, Battersby JE, Spellman MW, Basa LJ, Chakel JA (1988) In: Marshak D, Liu D (eds) Therapeutic peptides and proteins: assessing the new technologies. Cold Spring Harbor, New York, pp 95–118

    Google Scholar 

  30. Tsumoto K, Umetsu M, Kumagai I, Ejima D, Philo JS, Arakawa T (2004) Biotechnol Prog 20:1301–1308

    Article  CAS  Google Scholar 

  31. Kim SH, Yan YB, Zhou HM (2006) Biochem Cell Biol 84:30–38

    Article  CAS  Google Scholar 

  32. Ou WB, Park YD, Zhou HM (2002) Int J Biochem Cell Biol 34:136–147

    Article  CAS  Google Scholar 

  33. Samuel D, Kumar TKS, Ganesh G, Jayaraman G, Yang PW, Chang MM, Trivedi VD, Wang SL, Hwang KC, Chang DK, Yu C (2000) Protein Sci 9:344–352

    Article  CAS  Google Scholar 

  34. Misawa S, Kumagai I (1999) Biopolymers 51:297–307

    Article  CAS  Google Scholar 

  35. Reddy RCK, Lilie H, Rudolph R, Lange C (2005) Protein Sci 14:929–935

    Article  CAS  Google Scholar 

  36. Bourot S, Sire O, Trautwetter A, Touze T, Wu LF, Blanco C, Bernard T (2000) J Biol Chem 275:1050–1056

    Article  CAS  Google Scholar 

  37. Xia Y, Park YD, Mu H, Zhou HM, Wang XY, Meng FG (2007) Int J Biol Macromol 40:399–520

    Article  CAS  Google Scholar 

  38. Meng F, Park Y, Zhou H (2001) Int J Biochem Cell Biol 33:701–709

    Article  CAS  Google Scholar 

  39. Kumar TK, Samuel D, Jayarman G, Srimathi T, Yu C (1998) Biochem Mol Biol Int 46:509–517

    CAS  Google Scholar 

  40. Liu YD, Li JJ, Wang FW, Chen J, Li P, Su ZG (2007) Protein Express Purif 51:235–242

    Article  CAS  Google Scholar 

  41. Rudolph R (1990) In: Tschesche H (ed) Modern methods in protein and nucleic acid analysis. Walter de Grutyer, Berlin, New York, pp 149–171

    Google Scholar 

  42. Takahashi S, Ogasawara H, Watanabe T, Kumagai M, Inoue H, Hori K (2006) Biosci Biotechnol Biochem 70:2913–2918

    Article  CAS  Google Scholar 

  43. Lechtken A, Zundorf I, Dingermann T, Firla B, Steinhilber D (2006) Protein Express Purif 49:114–120

    Article  CAS  Google Scholar 

  44. Arakawa T, Ejima D, Tsumoto K, Obeyama N, Tanaka Y, Kita Y, Timasheff SN (2007) Biophys Chem 127:1–8

    Article  CAS  Google Scholar 

  45. Arora D, Khanna NJ (1996) J Biotechnol 52:127–133

    Article  CAS  Google Scholar 

  46. Asano R, Kudo T, Makabe K, Tsumoto K, Kumagai I (2002) FEBS Lett 528:70–76

    Article  CAS  Google Scholar 

  47. Hsih MH, Kuo JC, Tsai HJ (1997) Appl Microbiol Biotechnol 48:66–72

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jolanta Sereikaite.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bajorunaite, E., Sereikaite, J. & Bumelis, VA. l-Arginine Suppresses Aggregation of Recombinant Growth Hormones in Refolding Process from E. coli Inclusion Bodies. Protein J 26, 547–555 (2007). https://doi.org/10.1007/s10930-007-9096-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-007-9096-x

Keywords

Navigation