Skip to main content
Log in

How drug onset rate and duration of action affect drug forgiveness

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Medication nonadherence is one of the largest problems in healthcare today, particularly for patients undergoing long-term pharmacotherapy. To combat nonadherence, it is often recommended to prescribe so-called “forgiving” drugs, which maintain their effect despite lapses in patient adherence. Nevertheless, drug forgiveness is difficult to quantify and compare between different drugs. In this paper, we construct and analyze a stochastic pharmacokinetic/pharmacodynamic (PK/PD) model to quantify and understand drug forgiveness. The model parameterizes a medication merely by an effective rate of onset of effect when the medication is taken (on-rate) and an effective rate of loss of effect when a dose is missed (off-rate). Patient dosing is modeled by a stochastic process that allows for correlations in missed doses. We analyze this “on/off” model and derive explicit formulas that show how treatment efficacy depends on drug parameters and patient adherence. As a case study, we compare the effects of nonadherence on the efficacy of various antihypertensive medications. Our analysis shows how different drugs can have identical efficacies under perfect adherence, but vastly different efficacies for adherence patterns typical of actual patients. We further demonstrate that complex PK/PD models can indeed be parameterized in terms of effective on-rates and off-rates. Finally, we have created an online app to allow pharmacometricians to explore the implications of our model and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vrijens B, De Geest S, Hughes DA, Przemyslaw K, Demonceau J, Ruppar T, Dobbels F, Fargher E, Morrison V, Lewek P et al (2012) A new taxonomy for describing and defining adherence to medications. Br J Clin Pharmacol 73(5):691–705

    Article  PubMed  PubMed Central  Google Scholar 

  2. Osterberg L, Blaschke T (2005) Adherence to medication. N Engl J Med 353(5):487–497

    Article  CAS  PubMed  Google Scholar 

  3. Kim J, Combs K, Downs J, Tillman F III (2018) Medication adherence: the elephant in the room. US Pharmacist 43:30–34

    Google Scholar 

  4. De Geest S, Zullig LL, Dunbar-Jacob J, Helmy R, Hughes DA, Wilson IB, Vrijens B (2018) ESPACOMP medication adherence reporting guideline (EMERGE). Ann Intern Med 169(1):30–35

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lowy A, Munk VC, Ong SH, Burnier M, Vrijens B, Tousset EP, Urquhart J (2011) Effects on blood pressure and cardiovascular risk of variations in patients’ adherence to prescribed antihypertensive drugs: role of duration of drug action. Int J Clin Pract 65(1):41–53

    Article  CAS  PubMed  Google Scholar 

  6. Stauffer ME, Hutson P, Kaufman AS, Morrison A (2017) The adherence rate threshold is drug specific. Drugs R &D 17(4):645–653

    Article  CAS  Google Scholar 

  7. Assawasuwannakit P, Braund R, Duffull SB (2015) Quantification of the forgiveness of drugs to imperfect adherence. CPT 4(3):204–211

    Google Scholar 

  8. Assawasuwannakit P, Braund R, Duffull SB (2016) A framework for quantifying the influence of adherence and dose individualization. Clin Pharmacol Ther 99(4):452–459

    Article  CAS  PubMed  Google Scholar 

  9. Boissel J-P, Nony P (2002) Using pharmacokinetic-pharmacodynamic relationships to predict the effect of poor compliance. Clin Pharmacokinet 41(1):1–6

    Article  CAS  PubMed  Google Scholar 

  10. Garnett WR, McLean AM, Zhang Y, Clausen S, Tulloch SJ (2003) Simulation of the effect of patient nonadherence on plasma concentrations of carbamazepine from twice-daily extended-release capsules. Curr Med Res Opin 19(6):519–525

    Article  CAS  PubMed  Google Scholar 

  11. Reed RC, Dutta S (2004) Predicted serum valproic acid concentrations in patients missing and replacing a dose of extended-release divalproex sodium. Am J Health Syst Pharm 61(21):2284–2289

    Article  CAS  PubMed  Google Scholar 

  12. Dutta S, Reed RC (2006) Effect of delayed and/or missed enteric-coated divalproex doses on valproic acid concentrations: simulation and dose replacement recommendations for the clinician 1. J Clin Pharm Ther 31(4):321–329

    Article  CAS  PubMed  Google Scholar 

  13. Ding J, Zhang Y, Jiao Z, Wang Y (2012) The effect of poor compliance on the pharmacokinetics of carbamazepine and its epoxide metabolite using monte carlo simulation. Acta Pharmacol Sin 33(11):1431–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen C, Wright J, Gidal B, Messenheimer J (2013) Assessing impact of real-world dosing irregularities with lamotrigine extended-release and immediate-release formulations by pharmacokinetic simulation. Ther Drug Monit 35(2):188–193

    Article  CAS  PubMed  Google Scholar 

  15. Gidal BE, Majid O, Ferry J, Hussein Z, Yang H, Zhu J, Fain R, Laurenza A (2014) The practical impact of altered dosing on perampanel plasma concentrations: pharmacokinetic modeling from clinical studies. Epilepsy Behav 35:6–12

    Article  PubMed  Google Scholar 

  16. Brittain ST, Wheless JW (2015) Pharmacokinetic simulations of topiramate plasma concentrations following dosing irregularities with extended-release vs. immediate-release formulations. Epilepsy Behav 52:31–36

    Article  PubMed  Google Scholar 

  17. Sunkaraneni S, Blum D, Ludwig E, Chudasama V, Fiedler-Kelly J, Marvanova M, Bainbridge J, Phillips L (2018) Population pharmacokinetic evaluation and missed-dose simulations for eslicarbazepine acetate monotherapy in patients with partial-onset seizures. Clin Pharmacol Drug Dev 7(3):287–297

    Article  CAS  PubMed  Google Scholar 

  18. Hard ML, Wehr AY, Sadler BM, Mills RJ, von Moltke L (2018) Population pharmacokinetic analysis and model-based simulations of aripiprazole for a 1-day initiation regimen for the long-acting antipsychotic aripiprazole lauroxil. Eur J Drug Metab Pharmacokinet 43(4):461–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Elkomy MH (2020) Changing the drug delivery system: does it add to non-compliance ramifications control? A simulation study on the pharmacokinetics and pharmacodynamics of atypical antipsychotic drug. Pharmaceutics 12(4):297

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jia-qin G, Guo Y, Jiao Z, Ding J, Li G-F (2020) How to handle delayed or missed doses: a population pharmacokinetic perspective. Eur J Drug Metab Pharmacokinet 45(2):163–172

    Article  Google Scholar 

  21. Gibaldi M, Perrier D (1982) Pharmacokinetics, 2nd edn. Marcelly Dekker, New York

    Book  Google Scholar 

  22. Felmlee MA, Morris ME, Mager DE. Mechanism-based pharmacodynamic modeling. In: Computational toxicology, pp 583–600. Springer, Berlin (2012)

  23. Osterberg LG, Urquhart J, Blaschke TF (2010) Understanding forgiveness: minding and mining the gaps between pharmacokinetics and therapeutics. Clin Pharmacol Ther 88(4):457–459

    Article  CAS  PubMed  Google Scholar 

  24. Urquhart J (2002) The odds of the three nons when an aptly prescribed medicine isn’t working: non-compliance, non-absorption, non-response. Br J Clin Pharmacol 54(2):212–220

    Article  PubMed  PubMed Central  Google Scholar 

  25. Levy G (1993) A pharmacokinetic perspective on medicament noncompliance. Clin Pharmacol Ther 54(3):242–244

    Article  CAS  PubMed  Google Scholar 

  26. Web app at https://seanlawley.shinyapps.io/OnOff/

  27. Norris JR (1998) Markov chains. In: Statistical & probabilistic mathematics. Cambridge University Press, Cambridge

  28. Yuval P, Wilhelm S, Boris S (2000) Sixty years of Bernoulli convolutions. In: Bandt C, Graf S, Zähle M (eds) Fractal geometry and stochastics II. Birkhäuser, Basel, pp 39–65

    Google Scholar 

  29. Solomyak B (1995) On the random series \(\sum \pm \lambda ^n\) (an erdos problem). Ann Math 142(3):611–625

    Article  Google Scholar 

  30. Escribano C, Sastre MA, Torrano E (2001) Moments of infinite convolutions of symmetric Bernoulli distributions. J Comput Appl Math 153(1):191–199, 2003. In: Proceedings of the 6th international symposium on orthogonal polynomials, special functions and their applications, Rome, Italy, 18–22

  31. Tian-You H, Lau K-S (2008) Spectral property of the Bernoulli convolutions. Adv Math 219(2):554–567

    Article  Google Scholar 

  32. Kershner R, Wintner A (1935) On symmetric Bernoulli convolutions. Am J Math 57(3):541–548

    Article  Google Scholar 

  33. Jessen B, Wintner A (1935) Distribution functions and the Riemann zeta function. Trans Am Math Soc 38(1):48–88

    Article  Google Scholar 

  34. Wintner A (1935) On symmetric Bernoulli convolutions. Bull Am Math Soc 41:137–138

    Article  Google Scholar 

  35. Erdös P (1939) On a family of symmetric Bernoulli convolutions. Am J Math 61:974

    Article  Google Scholar 

  36. Lévy-Véhel P-E, Lévy-Véhel J (2013) Variability and singularity arising from poor compliance in a pharmacokinetic model I: the multi-IV case. J Pharmacokinet Pharmacodyn 40(1):15–39

    Article  PubMed  Google Scholar 

  37. Fermín LJ, Lévy-Véhel J (2017) Variability and singularity arising from poor compliance in a pharmacokinetic model II: the multi-oral case. J Math Biol 74(4):809–841

    Article  PubMed  Google Scholar 

  38. Counterman ED, Lawley SD (2021) What should patients do if they miss a dose of medication? A theoretical approach. J Pharmacokinet Pharmacodyn 48(6):873–892

    Article  PubMed  Google Scholar 

  39. Counterman ED, Lawley SD (2022) Designing drug regimens that mitigate nonadherence. Bull Math Biol 84(1):1–36

    Article  Google Scholar 

  40. Burnier M (2019) Is there a threshold for medication adherence? Lessons learnt from electronic monitoring of drug adherence. Front Pharmacol 9:1540

    Article  PubMed  PubMed Central  Google Scholar 

  41. Brian HR (1976) Compliance with therapeutic regimens, chapter A critical review of “determinants’’ of patient compliance with therapeutic regimens. Johns Hopkins University Press, Baltimore, pp 26–39

    Google Scholar 

  42. Radauceanu A, Virion J-M, Boivin J-M, Zannad F (2002) Time-effect profile of antihypertensive agents assessed with trough/peak ratio, smoothness index and dose omission: an ambulatory blood pressure monitoring study with trandolapril vs. quinapril1. Fundam Clin Pharmacol 16(6):545–554

    Article  CAS  PubMed  Google Scholar 

  43. Vaur L, Bobrie G, Dutrey-Dupagne C, Dubroca I, Vaisse B, Bouvier d’Yvoire M, Elkik FE, Chatellier G, Menard J (1998) Short-term effects of withdrawing angiotensin converting enzyme inhibitor therapy on home self-measured blood pressure in hypertensive patients. Am J Hypertens 11(2):165–173

    Article  CAS  PubMed  Google Scholar 

  44. Palatini P, Jung W, Shlyakhto E, Botha J, Bush C, Keefe DL (2010) Maintenance of blood-pressure-lowering effect following a missed dose of aliskiren, irbesartan or ramipril: results of a randomized, double-blind study. J Hum Hypertens 24(2):93–103

    Article  CAS  PubMed  Google Scholar 

  45. Yves Lacourciere and for the Candesartan/Losartan study investigators Asmar, Roland. A comparison of the efficacy and duration of action of candesartan cilexetil and losartan as assessed by clinic and ambulatory blood pressure after a missed dose, in truly hypertensive patients*: a placebo-controlled, forced titration study. Am J Hypertens 12(12):1181–1187 (1999)

  46. Johnson BF, Whelton A (1994) A study design for comparing the effects of missing daily doses of antihypertensive drugs. Am J Ther 1(4):260–267

    Article  PubMed  Google Scholar 

  47. Smilde JG (1997) A comparison of amlodipine and felodipine extended release in the treatment of hypertension at steady state and after two missed doses. Curr Ther Res 58(3):141–153

    Article  CAS  Google Scholar 

  48. Vrijens B, Vincze G, Kristanto P, Urquhart J, Burnier M (2008) Adherence to prescribed antihypertensive drug treatments: longitudinal study of electronically compiled dosing histories. BMJ 336(7653):1114–1117

    Article  PubMed  PubMed Central  Google Scholar 

  49. AHFS DI Essentials. Warfarin. https://www.drugs.com/monograph/warfarin.html. Accessed 8 Feb 2023

  50. Lixoft SAS, a Simulations Plus company. Monolix 2021r2. https://lixoft.com/products/monolix/

  51. Lixoft SAS, a Simulations Plus company. Case studes. https://monolix.lixoft.com/case-studies/. Accessed 8 Feb 2023

  52. O’Reilly RA, Aggeler PM (1968) Studies on coumarin anticoagulant drugs. Circulation 38(1):169–177

    Article  PubMed  Google Scholar 

  53. Waterman AD, Milligan PE, Bayer L, Banet GA, Gatchel SK, Gage BF (2004) Effect of warfarin nonadherence on control of the International Normalized Ratio. Am J Health Syst Pharm 61(12):1258–1264

    Article  PubMed  Google Scholar 

  54. Kimmel SE, Chen Z, Price M, Parker CS, Metlay JP, Christie JD, Brensinger CM, Newcomb CW, Samaha FF, Gross R (2007) The influence of patient adherence on anticoagulation control with warfarin: results from the international normalized ratio adherence and genetics (IN-RANGE) study. Arch Intern Med 167(3):229–235

    Article  CAS  PubMed  Google Scholar 

  55. Platt AB, Localio AR, Brensinger CM, Cruess DG, Christie JD, Gross R, Parker CS, Price M, Metlay JP, Cohen A, Newcomb CW, Strom BL, Laskin MS, Kimmel SE (2008) Risk factors for nonadherence to warfarin: results from the in-range study. Pharmacoepidemiol Drug Saf 17(9):853–860

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yao X, Abraham NS, Alexander GC, Crown W, Montori VM, Sangaralingham LR, Gersh BJ, Shah ND, Noseworthy PA (2016) Effect of adherence to oral anticoagulants on risk of stroke and major bleeding among patients with atrial fibrillation. J Am Heart Assoc 5(2):e003074

    Article  PubMed  PubMed Central  Google Scholar 

  57. AHFS DI Essentials. Metformin. Data retrieved on 8 February 2023 from https://www.drugs.com/monograph/metformin.html

  58. Hong Y, Rohatagi S, Habtemariam B, Walker JR, Schwartz SL, Mager DE (2008) Population exposure-response modeling of metformin in patients with type 2 diabetes mellitus. J Clin Pharmacol 48(6):696–707

    Article  CAS  PubMed  Google Scholar 

  59. McAllister N, Lawley S (2022) A pharmacokinetic and pharmacodynamic analysis of drug forgiveness. J Pharmacokinet Pharmacodyn 49:1–17

    Article  Google Scholar 

  60. Tseng Y-J, Steinberg G, Fox KP, Armstrong J, Mandl KD (2017) Antihyperglycemic medications: a claims-based estimate of first-line therapy use prior to initialization of second-line medications. Diabetes Care 40(11):1500–1505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Parente M, Pignata I, Gnavi R, Spadea T, Di Martino M, Baratta F, Brusa P (2020) Assessment of non-adherence to oral metformin and atorvastatin therapies: a cross-sectional survey in piedmont (Italy). Patient Prefer Adherence 14:261–266

    Article  PubMed  PubMed Central  Google Scholar 

  62. Christofides EA (2019) Practical insights into improving adherence to metformin therapy in patients with type 2 diabetes. Clin Diabetes 37(3):234–241

    Article  PubMed  PubMed Central  Google Scholar 

  63. McGovern A, Tippu Z, Hinton W, Munro N, Whyte M, de Lusignan S (2018) Comparison of medication adherence and persistence in type 2 diabetes: a systematic review and meta-analysis. Diabetes Obes Metab 20(4):1040–1043

    Article  CAS  PubMed  Google Scholar 

  64. Sun J, Nagaraj HN, Reynolds NR (2007) Discrete stochastic models for compliance analysis based on an AIDS clinical trial group (ACTG) study. Biom J 49(5):731–741

    Article  PubMed  Google Scholar 

  65. Hammer SM, Vaida F, Bennett KK, Holohan MK, Sheiner L, Eron JJ, Wheat LJ, Mitsuyasu RT, Gulick RM, Valentine FT et al (2002) Dual vs single protease inhibitor therapy following antiretroviral treatment failure: a randomized trial. JAMA 288(2):169–180

    Article  CAS  PubMed  Google Scholar 

  66. Jonklaas J, Bianco AC, Bauer AJ, Burman KD, Cappola AR, Celi FS, Cooper DS, Kim BW, Peeters RP, Rosenthal MS et al (2014) Guidelines for the treatment of hypothyroidism: prepared by the American thyroid association task force on thyroid hormone replacement. Thyroid 24(12):1670–1751

    Article  PubMed  PubMed Central  Google Scholar 

  67. Clark ED, Lawley SD (2022) Should patients skip late doses of medication? A pharmacokinetic perspective. J Pharmacokinet Pharmacodyn 49(4):429–444

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (Grant Nos. DMS-1944574 and DMS-1814832).

Author information

Authors and Affiliations

Authors

Contributions

EDC and SDL jointly devised and carried out the research and wrote the manuscript.

Corresponding author

Correspondence to Sean D. Lawley.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this Appendix, we collect details of the mathematical analysis.

Moments of drug effect

We now compute the first and second moments in (7)–(8). First, for the transition probabilities in (4)–(5), the transition matrix is

$$\begin{aligned} P = \begin{pmatrix} p_0 &{} 1-p_0 \\ 1-p_1 &{} p_1 \end{pmatrix}, \end{aligned}$$
(20)

and the stationary distribution is

$$\begin{aligned} \pi = \begin{pmatrix} \displaystyle {\frac{1-p_1}{2-p_0-p_1}}&\displaystyle {\frac{1-p_0}{2-p_0-p_1}} \end{pmatrix}. \end{aligned}$$

Hence, the proportion of doses taken is

$$\begin{aligned} p = \pi (1) = \frac{1-p_0}{2-p_0-p_1}. \end{aligned}$$

Note that the first moment of X is given by the sum

$$\begin{aligned} {\mathbb {E}}[X_{0}] = {\mathbb {E}}[X_{0}\mathbbm {1}_{\xi _{-1}=0}] + {\mathbb {E}}[X_{0}\mathbbm {1}_{\xi _{-1}=1}], \end{aligned}$$

where \(\mathbbm {1}_{E}\in \{0,1\}\) denotes the indicator function, which takes on a value of 1 if the event E occurs and 0 otherwise. At steady state (i.e. the patient has been taking the medication for sufficiently long at adherence rate p), we have

$$\begin{aligned} X {\mathop {=}\limits ^{\text {d}}}\alpha X + (\beta -\alpha )X\xi + (1-\beta )\xi , \end{aligned}$$
(21)

where \(X{\mathop {=}\limits ^{\text {d}}}Y\) denotes equality in distribution. Therefore,

$$\begin{aligned} X_{0} {\mathop {=}\limits ^{\text {d}}}X_{1} = \alpha X_0 + (\beta -\alpha )X_0\xi _1 + (1-\beta )\xi _1, \end{aligned}$$

which means that

$$\begin{aligned} X_{0}\mathbbm {1}_{\xi _0=j} {\mathop {=}\limits ^{\text {d}}}X_{1}\mathbbm {1}_{\xi _1=j} = \left( \alpha X_0 + (\beta -\alpha )X_0\xi _1 + (1-\beta )\xi _1\right) \mathbbm {1}_{\xi _1=j}. \end{aligned}$$

Taking the expected value, we have

$$\begin{aligned} {\mathbb {E}}[X_{0}\mathbbm {1}_{\xi _0=j}]&= {\mathbb {E}}[X_{1}\mathbbm {1}_{\xi _1=j}] \nonumber \\&= {\left\{ \begin{array}{ll} {\mathbb {E}}[\alpha X_{0}\mathbbm {1}_{\xi _1=0}], &{} j=0, \\ {\mathbb {E}}[\left( \beta X_{0} + (1-\beta )\right) \mathbbm {1}_{\xi _1=1}], &{} j=1, \end{array}\right. } \nonumber \\&= {\left\{ \begin{array}{ll} \alpha {\mathbb {E}}[X_{0}\mathbbm {1}_{\xi _1=0}], &{} j=0, \\ (1-\beta )\pi (1) + \beta {\mathbb {E}}[X_{0}\mathbbm {1}_{\xi _1=1}], &{} j=1. \end{array}\right. }, \end{aligned}$$
(22)

where \(\pi (1) = p\). Note that

$$\begin{aligned} {\mathbb {E}}[X_0\mathbbm {1}_{\xi _1=j}]&= \sum _{i=0}^{1}{\mathbb {E}}[X_0\mathbbm {1}_{\xi _1=j}\mathbbm {1}_{\xi _0=i}] \nonumber \\&= \sum _{i=0}^{1}{\mathbb {E}}[{\mathbb {E}}[X_0\mathbbm {1}_{\xi _1=j}\mathbbm {1}_{\xi _0=i}\,|\,\{\xi _n\}_{n\le -1}]], \end{aligned}$$
(23)

where the second equality comes from the tower property of conditional expectation. The term within the sum can be simplified. For a function \(f(X_{0},j)\),

$$\begin{aligned}&{\mathbb {E}}[{\mathbb {E}}[f(X_0,j)\mathbbm {1}_{\xi _1=j}\mathbbm {1}_{\xi _0=i}\,|\,\{\xi _n\}_{n\le -1}]]\nonumber \\&\quad = {\mathbb {E}}[f(X_0,j)\mathbbm {1}_{\xi _0=i}{\mathbb {E}}[\mathbbm {1}_{\xi _1=j}\,|\,\{\xi _n\}_{n\le -1}]] \nonumber \\&\quad = {\mathbb {E}}[f(X_0,j)\mathbbm {1}_{\xi _0=i}P_{ij}] \nonumber \\&\quad = P_{ij}{\mathbb {E}}[f(X_0,j)\mathbbm {1}_{\xi _0=i}], \end{aligned}$$
(24)

where \(P_{ij}\) is the ij-th entry of the transition matrix (20). This means that

$$\begin{aligned} {\mathbb {E}}[f(X_0,j)\mathbbm {1}_{\xi _1=j}]&= \sum _{i=0}^{1}P_{ij}{\mathbb {E}}[f(X_0,j)\mathbbm {1}_{\xi _0=i}] \\&= P_{0j}{\mathbb {E}}[f(X_0,j)\mathbbm {1}_{\xi _0=0}] \\&\quad + P_{1j}{\mathbb {E}}[f(X_0,j)\mathbbm {1}_{\xi _0=1}]. \end{aligned}$$

Combining this result with (22) we have

$$\begin{aligned} {\mathbb {E}}[X_0\mathbbm {1}_{\xi _0=0}]&= {\mathbb {E}}[X_1\mathbbm {1}_{\xi _1=0}] = \alpha {\mathbb {E}}[X_0\mathbbm {1}_{\xi _1=0}] \\&= \alpha \left( P_{00}{\mathbb {E}}[X_0\mathbbm {1}_{\xi _0=0}] + P_{10}{\mathbb {E}}[X_0\mathbbm {1}_{\xi _0=1}]\right) , \\ {\mathbb {E}}[X_0\mathbbm {1}_{\xi _0=1}]&= {\mathbb {E}}[X_1\mathbbm {1}_{\xi _1=1}] = (1-\beta )\pi (1) + \beta {\mathbb {E}}[X_0\mathbbm {1}_{\xi _1=1}] \\&= (1-\beta )\pi (1) + \beta \left( P_{01}{\mathbb {E}}[X_0\mathbbm {1}_{\xi _0=0}] \right. \\&\left. \quad + P_{11}{\mathbb {E}}[X_0\mathbbm {1}_{\xi _0=1}]\right) . \end{aligned}$$

These lead to the system of equations

$$\begin{aligned} {\mathbb {E}}[X_0\mathbbm {1}_{\xi _0=0}]&= \frac{\alpha (1-p_1)}{1-\alpha p_0}{\mathbb {E}}[X_0\mathbbm {1}_{\xi _0=1}], \\ {\mathbb {E}}[X_0\mathbbm {1}_{\xi _0=1}]&= \frac{(1-\beta )\pi (1)}{1-\beta p_1} + \frac{\beta (1-p_0)}{1-\beta p_1}{\mathbb {E}}[X_0\mathbbm {1}_{\xi _0=0}]. \end{aligned}$$

The solution to this system is

$$\begin{aligned} {\mathbb {E}}[X_0\mathbbm {1}_{\xi _0=0}]&= \frac{\pi (1)\alpha (1-\beta )(1-p_1)}{(1-\beta p_1)(1-\alpha p_0)-\alpha \beta (1-p_0)(1-p_1)}, \\ {\mathbb {E}}[X_0\mathbbm {1}_{\xi _0=1}]&= \frac{\pi (1)(1-\beta )(1-\alpha p_0)}{(1-\beta p_1)(1-\alpha p_0)-\alpha \beta (1-p_0)(1-p_1)}. \end{aligned}$$

Thus,

$$\begin{aligned} {\mathbb {E}}[X_0]&= {\mathbb {E}}[X_0\mathbbm {1}_{\xi _0=0}] + {\mathbb {E}}[X_0\mathbbm {1}_{\xi _0=1}] \\&= \frac{\pi (1)(1-\beta )\left( \alpha (1-p_1)+(1-\alpha p_0)\right) }{(1-\beta p_1)(1-\alpha p_0)-\alpha \beta (1-p_0)(1-p_1)}. \end{aligned}$$

The second moment can be computed in a similar fashion. Note that

$$\begin{aligned} X_{0}^2 {\mathop {=}\limits ^{\text {d}}}X_{1}^2 = \left( \alpha X_0 + (\beta -\alpha )X_0\xi _1 + (1-\beta )\xi _1\right) ^2, \end{aligned}$$

and thus

$$\begin{aligned} {\mathbb {E}}[X_{0}^2\mathbbm {1}_{\xi _0=j}]&= {\mathbb {E}}[X_{1}^2\mathbbm {1}_{\xi _1=j}] \nonumber \\&= {\left\{ \begin{array}{ll} {\mathbb {E}}[\alpha ^2 X_{0}^2\mathbbm {1}_{\xi _1=0}], &{} j=0, \\ {\mathbb {E}}[\left( \beta X_{0} + (1-\beta )\right) ^2\mathbbm {1}_{\xi _1=1}], &{} j=1, \end{array}\right. } \end{aligned}$$
(25)

The results in (23) and (24) can be applied to \({\mathbb {E}}[X_{0}^2\mathbbm {1}_{\xi _1=j}]\), which gives

$$\begin{aligned} {\mathbb {E}}[X_0^2\mathbbm {1}_{\xi _1=j}]&= P_{0j}{\mathbb {E}}[X_0^2\mathbbm {1}_{\xi _0=0}] + P_{1j}{\mathbb {E}}[X_0^2\mathbbm {1}_{\xi _0=1}] \end{aligned}$$

Thus,

$$\begin{aligned} {\mathbb {E}}[X_0^2\mathbbm {1}_{\xi _1=0}]&= {\mathbb {E}}[X_1^2\mathbbm {1}_{\xi _2=0}] = \alpha ^2{\mathbb {E}}[X_0^2\mathbbm {1}_{\xi _2=0}] \\&= \alpha ^2\left( P_{00}{\mathbb {E}}[X_0^2\mathbbm {1}_{\xi _1=0}] + P_{10}{\mathbb {E}}[X_0^2\mathbbm {1}_{\xi _1=1}]\right) \\&= \alpha ^2\left( p_0{\mathbb {E}}[X_0^2\mathbbm {1}_{\xi _1=0}] + (1-p_1){\mathbb {E}}[X_0^2\mathbbm {1}_{\xi _1=1}]\right) , \\ {\mathbb {E}}[X_0^2\mathbbm {1}_{\xi _1=1}]&= {\mathbb {E}}[X_1^2\mathbbm {1}_{\xi _2=1}] \\&= (1-\beta )^2\pi (1) + 2\beta (1-\beta ){\mathbb {E}}[X_0\mathbbm {1}_{\xi _1=1}] \\&\quad + \beta ^2{\mathbb {E}}[X_0^2\mathbbm {1}_{\xi _2=1}] \\&= (1-\beta )^2\pi (1) + 2\beta (1-\beta ){\mathbb {E}}[X_0\mathbbm {1}_{\xi _1=1}] \\&\quad + \beta ^2\left( (1-p_0){\mathbb {E}}[X_0^2\mathbbm {1}_{\xi _1=0}] + p_1{\mathbb {E}}[X_0^2\mathbbm {1}_{\xi _1=1}]\right) . \end{aligned}$$

From this system of equations we have

$$\begin{aligned}&{\mathbb {E}}[X_0^2\mathbbm {1}_{\xi _1=0}] \\&\quad = \left( \frac{\alpha ^2(1-p_1)}{(1-\alpha ^2p_0)(1-\beta ^2p_1)-\alpha ^2\beta ^2(1-p_0)(1-p_1)}\right) \\&\qquad \times \left( (1-\beta )^2\pi (1) + 2\beta (1-\beta ){\mathbb {E}}[X_0\mathbbm {1}_{\xi _1=1}]\right) , \\&{\mathbb {E}}[X_0^2\mathbbm {1}_{\xi _1=0}] \\&\quad = \left( \frac{(1-\alpha ^2p_0)}{(1-\alpha ^2p_0)(1-\beta ^2p_1)-\alpha ^2\beta ^2(1-p_0)(1-p_1)}\right) \\&\qquad \times \left( (1-\beta )^2\pi (1) + 2\beta (1-\beta ){\mathbb {E}}[X_0\mathbbm {1}_{\xi _1=1}]\right) , \end{aligned}$$

which means that the second moment is

$$\begin{aligned} {\mathbb {E}}[X_0^2]&= \left( \frac{\alpha ^2(1-p_1)+(1-\alpha ^2p_0)}{(1-\alpha ^2p_0)(1-\beta ^2p_1)-\alpha ^2\beta ^2(1-p_0)(1-p_1)}\right) \\&\qquad \qquad \times \left( (1-\beta )^2\pi (1) + 2\beta (1-\beta ){\mathbb {E}}[X_0\mathbbm {1}_{\xi _1=1}]\right) . \end{aligned}$$

Numerical computation of \({\mathbb {P}}(X>\theta )\)

Assuming independence of \(\{\xi _{n}\}_{n\in {\mathbb {Z}}}\), the distribution function of the biomarker response level can be numerically computed using the recursion relationship (3). By (21), we have that

$$\begin{aligned} {\mathbb {P}}(X_{n} \le x)&= {\mathbb {P}}(\alpha X_{n} + (\beta -\alpha )X_{n}\xi _{n+1} + (1-\beta )\xi _{n+1} \le x) \\&= (1-p){\mathbb {P}}(X_{n} \le x/\alpha ) + p{\mathbb {P}}(X_{n} \le (x-1)/\beta + 1). \end{aligned}$$

Denoting the distribution function of X by \(F(x) = {\mathbb {P}}(X \le x)\), we thus have

$$\begin{aligned} F(x) = (1-p)F\left( \frac{x}{\alpha }\right) + pF\left( \frac{x-1}{\beta } + 1\right) . \end{aligned}$$
(26)

By starting with an initial guess for the distribution function of X and iteratively applying (26), the true distribution function of X can be numerically determined. Specifically, we obtain a sequence of approximating distribution functions \(\{F_{m}(x)\}_{m\ge 0}\) where \(F_{0}(x)=x\) and \(F_{m+1}(x)\) is defined by \(F_{m}(x)\) via

$$\begin{aligned} F_{m+1}(x) = (1-p)F_{m}\left( \frac{x}{\alpha }\right) + pF_{m}\left( \frac{x-1}{\beta } + 1\right) . \end{aligned}$$

The dashed curves in Fig. 4 are obtained via this recursion once successive iterations \(F_{m}(x)\) and \(F_{m+1}(x)\) differ by less than \(10^{-10}\) for all \(x\in [0,1]\).

Beta distribution formulas

In the "Mean and variance of biomarker response" section, we described how we can approximate the full probability distribution of X by a Beta random variable B chosen so that the first and second moments of X and B agree. We now give the explicit formulas for this Beta distribution fit.

The probability density function of a Beta random variable B is given by

$$\begin{aligned} f_{B}(x) =\frac{\Gamma (a+b)}{\Gamma (a)\Gamma (b)}x^{a-1}(1-x)^{b-1},\quad \text {if }x\in (0,1), \end{aligned}$$

and \(f_{B}(x)=0\) for \(x\notin (0,1)\), where \(\Gamma (z)=\int _{0}^{\infty }u^{z-1}e^{-u}\,\text {d} u\) denotes the Gamma function. The first and second moments of B are

$$\begin{aligned} {\mathbb {E}}[B] = \frac{a}{a+b}, \quad {\mathbb {E}}[B^2] = \frac{a(a+1)}{(a+b)(a+b+1)}. \end{aligned}$$

Therefore, choosing a and b so that \({\mathbb {E}}[B]={\mathbb {E}}[X]\) and \({\mathbb {E}}[B^{2}]={\mathbb {E}}[X^{2}]\) implies

$$\begin{aligned} a =\frac{{\mathbb {E}}[X]({\mathbb {E}}[X]-{\mathbb {E}}[X^{2}])}{{\mathbb {E}}[X^{2}]-({\mathbb {E}}[X])^{2}},\quad b =\frac{(1-{\mathbb {E}}[X])({\mathbb {E}}[X]-{\mathbb {E}}[X^{2}])}{{\mathbb {E}}[X^{2}]-({\mathbb {E}}[X])^{2}}. \end{aligned}$$
(27)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clark, E.D., Lawley, S.D. How drug onset rate and duration of action affect drug forgiveness. J Pharmacokinet Pharmacodyn (2024). https://doi.org/10.1007/s10928-023-09897-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10928-023-09897-1

Keywords

Navigation