Skip to main content

Advertisement

Log in

Two compartmental fractional derivative model with general fractional derivative

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

This study presents a new two compartmental model with, recently defined General fractional derivative. We review that concept of General fractional derivative and use the kernel function that generalizes the classical Caputo derivative in a mathematically consistent way. Next we use this model to study the release of antibiotic gentamicin in poly (vinyl alcohol)/gentamicin(PVA/Gent) hydrogel aimed for wound dressing in medical treatment of deep chronical wounds. The PVA/Gent hydrogel was prepared by physical cross linking of poly (vinyl alcohol) dispersion using freezing–thawing method, and then was swollen in gentamicin solution at 37 °C during 48 h. The concentration of released gentamicin was determined using a high-performance liquid chromatography coupled with mass spectrometer. The advantage of this model is the existence of new parameters in the definition of fractional derivative, as compared with classical fractional compartmental models. The model proposed here in the special case reduces to the classical (integer order) linear two compartmental model as well as classical fractional order two compartmental model since it has more parameters that are determined from the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Copot D, Magin RL, De Keyser R, Ionescua C (2017) Data-driven modeling of drug tissue trapping using anomalous kinetics. Chaos Solitons Fractals 102:441–446. https://doi.org/10.1016/j.chaos.2017.03.031

    Article  Google Scholar 

  2. Kovacs L, Benyo B, Bokor J, Benyo Z (2011) Induced L2-norm minimization of glucose-insulin system for Type I diabetic patients. Comput Methods Programs Biomed 102:105–118. https://doi.org/10.1016/j.cmpb.2010.06.019

    Article  PubMed  Google Scholar 

  3. Drexler D, Kovacs L, Sapi J, Harmati I, Benyo Z (2011) Model-based analysis and synthesis of tumor growth under angiogenic inhibition: a case study. IFAC Proc 44(1):3753–3759

    Article  Google Scholar 

  4. Kiss B, Sapi J, Kovacs L (2013) Imaging method for model-based control of tumor diseases. In: Proceedings of the IEEE 11-th international symposium on intelligent systems and informatics (SISY), pp 271–275

  5. Copot D, Ionescu C (2014) Drug delivery system for general anesthesia: where are we? In: Proceedings of the IEEE international conference on systems, man, and cybernetics (SMC), pp 2452–2457

  6. Ionescu CM, Copot D, De Keyser R (2017) Anesthesiologist in the loop and predictive algorithm to maintain hypnosis while mimicking surgical disturbance. IFAC PapersOnLine 50–1:15080–15085. https://doi.org/10.1016/j.ifacol.2017.08.2526

    Article  Google Scholar 

  7. Popovic JK, Spasic D, Tosic J, Kolarovic J, Malti R, Mitic IM, Pilipovic S, Atanackovic TM (2015) Fractional model for pharmacokinetics of high dose methotrexate in children with acute lymphoblastic leukaemia. Commun Nonlinear Sci Numer Simul 22:451–471. https://doi.org/10.1016/j.cnsns.2014.08.014

    Article  Google Scholar 

  8. Churilov A, Medvedev A, Shepeljavyi A (2009) Mathematical model of non-basal testosterone regulation in the male by pulse modulated feedback. Automatica 45:78–85. https://doi.org/10.1016/j.automatica.2008.06.016

    Article  Google Scholar 

  9. Dokoumetzidis A, Macheras P (2009) Fractional kinetics in drug absorption and disposition processes. J Pharmacokinet Pharmacodyn 36:165–178. https://doi.org/10.1007/s10928-009-9116-x

    Article  CAS  PubMed  Google Scholar 

  10. Dokoumetzidis A, Magin R, Macheras P (2010) A commentary on fractionalization of multi-compartmental models. J Pharmacokinet Pharmacodyn 37:203–207. https://doi.org/10.1007/s10928-010-9153-5

    Article  PubMed  Google Scholar 

  11. Verotta DJ (2010) Fractional compartmental models and multi-term Mittag-Leffler response functions. J Pharmacokinet Pharmacodyn 37:209–221. https://doi.org/10.1007/s10928-010-9155-3

    Article  PubMed  PubMed Central  Google Scholar 

  12. Atanackovic TM, Pilipovic S, Stankovic B, Zorica D (2014) Fractional calculus with application in mechanics: vibrations and diffusion processes. ISTE, Wiley, London, New York

    Book  Google Scholar 

  13. Podlubny I (1999) Fractional differential equations. Academic Press, San Diego

    Google Scholar 

  14. Hilfer E (ed) (2000) Applications of fractional calculus in physics. World Scientific, New York

    Google Scholar 

  15. Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier, Amsterdam

    Google Scholar 

  16. Diethelm K (2010) The analysis of fractional differential equations. Springer, Berlin

    Book  Google Scholar 

  17. Sopasakis P, Sarimveis H, Macheras P, Dokoumetzidis A (2018) Fractional calculus in pharmacokinetics. J Pharmacokinet Pharmacodyn 45:107–125. https://doi.org/10.1007/s10928-017-9547-8

    Article  CAS  PubMed  Google Scholar 

  18. Atanackovic TM, Pilipovic S, Zorica D (2007) A diffusion wave equation with two fractional derivatives of different order. J Phys A Math Theor 40:5319–5333. https://doi.org/10.1088/1751-8113/40/20/006

    Article  Google Scholar 

  19. Popovic JK, Atanackovic MT, Pilipovic AS, Rapaic MR, Pilipovic S, Atanackovic TM (2010) A new approach to the compartmental analysis in pharmacokinetics: fractional time evolution of diclofenac. J Pharmacokinet Pharmacodyn 37(2):119–134. https://doi.org/10.1007/s10928-009-9147-3

    Article  CAS  PubMed  Google Scholar 

  20. Popovic J, Dolicanin D, Rapaic M, Popovic SL, Pilipovic S, Atanackovic TM (2011) A nonlinear two compartmental fractional derivative model. Eur J Drug Metab Pharmacokinet 36:189–196. https://doi.org/10.1007/s13318-011-0057-6

    Article  CAS  PubMed  Google Scholar 

  21. Ionescu C, Lopes A, Copot D, Machado JAT, Bates JHT (2017) The role of fractional calculus in modeling biological phenomena: a review. Commun Nonlinear Sci Numer Simul 51:141–159. https://doi.org/10.1016/j.cnsns.2017.04.001

    Article  Google Scholar 

  22. Tarasov VE (2021) General fractional dynamics. Mathematics 9:1464. https://doi.org/10.3390/math9131464

    Article  Google Scholar 

  23. Samko SG, Cardoso RP (2003) Integral equations of the first kind of sonine type. Int J Math Math Sci 57:3609–3632. https://doi.org/10.1155/S0161171203211455

    Article  Google Scholar 

  24. Kochubei AN (2011) General fractional calculus, evolution equations, and renewal processes. Integral Eq Oper Theory 7:583–600. https://doi.org/10.1007/s00020-011-1918-8

    Article  Google Scholar 

  25. Luchko Y (2021) General fractional integrals and derivatives of arbitrary order. Symmetry 13:755. https://doi.org/10.3390/sym13050755

    Article  Google Scholar 

  26. Hanyga A (2020) A comment on a controversial issue: a generalized fractional derivative cannot have a regular kernel. Fract Calc Appl Anal 23:211–223. https://doi.org/10.1515/fca-2020-0008

    Article  Google Scholar 

  27. Luchko Y (2021) General fractional integrals and derivatives with the Sonine kernels. Mathematics 9:594. https://doi.org/10.3390/math9060

    Article  Google Scholar 

  28. Luchko Y (2021) Operational calculus for the general fractional derivative and its applications. Fract Calc Appl Anal 24:338–375. https://doi.org/10.1515/fca-2021-0016

    Article  Google Scholar 

  29. Atanackovic TM, Pilipovic S (2022) Zener model with general fractional calculus: thermodynamical restrictions. Fractal Fract 6:617. https://doi.org/10.3390/fractalfract6100617

    Article  Google Scholar 

  30. Gorenflo R, Kilbas AA, Mainardi F, Rogosin SV (2014) Mittag-Leffler functions related topics and applications. Springer-Verlag, Berlin Heidelberg

    Book  Google Scholar 

  31. Rescigno A (2003) Foundations of pharmacokinetics. Kluwer Academic Publishers, New York

    Book  Google Scholar 

  32. Caputo M, Cametti C (2021) Diffusion through skin in the light of a fractional derivative approach: progress and challenges. J Pharmacokinet Pharmacodyn 48:3–19. https://doi.org/10.1007/s10928-020-09715-y

    Article  PubMed  Google Scholar 

  33. Brezinski C (2007) Numerical methods for laplace transform inversion. Springer, New York

    Google Scholar 

  34. Stevanović M, Djošić M, Janković A, Kojić V, Stojanović J, Grujić S, Matić Bujagić I, Rhee KY, Mišković-Stanković V (2021) The Chitosan-based bioactive composite coating on titanium. J Mater Res Technol 15:4461–4474. https://doi.org/10.1016/j.jmrt.2021.10.072

    Article  CAS  Google Scholar 

  35. Simovic L, Skundric P, Pajic-Lijakovic I, Ristic K, Medovic A, Tasić G (2010) Mathematical model of gentamicin sulfate release from a bioactive textile material as a transdermal system under in vitro conditions. J Appl Polym Sci 117:1424–1430. https://doi.org/10.1002/app.31964

    Article  CAS  Google Scholar 

  36. Thakur A, Wanchoo RK, Singh P (2011) Hydrogels of Poly(acrylamide-co-acrylic acid): n-vitro study on release of gentamicin sulfate. Chem Biochem Eng Q 25:471–482

    CAS  Google Scholar 

  37. Croitoru C, Roata IC, Pascu A, Stanciu EM (2020) Diffusion and controlled release in physically crosslinked poly (vinyl alcohol)/iota-carrageenan hydrogel blends. Polymers 12:1544. https://doi.org/10.3390/polym12071544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bajpai SK, Ferooz Shah F, Bajpai M (2017) Dynamic release of gentamicin sulfate (GS) from alginate dialdehyde (AD)-crosslinked casein (CAS) films for antimicrobial applications. Des Monomers Polym 20:18–32. https://doi.org/10.1080/15685551.2016.1231037

    Article  CAS  PubMed  Google Scholar 

  39. Della Porta G, Campardelli R, Cricchio V, Oliva F, Maffulli N, Reverchon E (2016) Injectable PLGA/Hydroxyapatite/Chitosan microcapsules produced by supercritical emulsion extraction technology: an in vitro study on teriparatide/gentamicin controlled release. J Pharm Sci 105:2164–2172. https://doi.org/10.1016/j.xphs.2016.05.002

    Article  CAS  PubMed  Google Scholar 

  40. Obradovic B, Stojkovska J, Jovanovic Z, Miskovic-Stankovic V (2012) Novel alginate based nanocomposite hydrogels with incorporated silver nanoparticles. J Mater Sci 23:99–107. https://doi.org/10.1007/2Fs10856-011-4522-1

    Article  CAS  Google Scholar 

  41. Abudabbus MM, Jevremović I, Janković A, Perić-Grujić A, Matić I, Vukašinović-Sekulić M, Hui D, Rhee KY, Mišković-Stanković V (2016) Biological activity of electrochemically synthesized silver doped polyvinyl alcohol/graphene composite hydrogel discs for biomedical applications. Compos Part B Eng 104:26–34. https://doi.org/10.1016/j.compositesb.2016.08.024

    Article  CAS  Google Scholar 

  42. Nešović K, Janković A, Kojić V, Vukašinović-Sekulić M, Perić-Grujić A, Rhee KY, Mišković-Stanković V (2018) Silver/poly(vinyl alcohol)/chitosan/graphene hydrogels: synthesis, biological and physicochemical properties and silver release kinetics. Compos Part B Eng 154:175–185. https://doi.org/10.1016/j.compositesb.2018.08.005

    Article  CAS  Google Scholar 

  43. Nešović K, Janković A, Radetić T, Vukašinović-Sekulić M, Kojić V, Lj Ž, Perić-Grujić A, Rhee KY, Mišković-Stanković V (2019) Chitosan-based hydrogel wound dressings with electrochemically incorporated silver nanoparticles: in vitro study. Eur Polym J 121:109257. https://doi.org/10.1016/j.eurpolymj.2019.109257

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by University Union—Nikola Tesla, Belgrade, Serbia (VMS) and Faculty of Technical Sciences, University of Novi Sad (TMA).

Author information

Authors and Affiliations

Authors

Contributions

VMS was responsible for hydrogel preparation and wrote the main manuscript text. MJ performed the numerical analysis. TMA formulated the mathematical model and prepared figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Teodor M. Atanackovic.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miskovic-Stankovic, V., Janev, M. & Atanackovic, T.M. Two compartmental fractional derivative model with general fractional derivative. J Pharmacokinet Pharmacodyn 50, 79–87 (2023). https://doi.org/10.1007/s10928-022-09834-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-022-09834-8

Keywords

Navigation