Skip to main content
Log in

How does obesity affect residence time dispersion and the shape of drug disposition curves? Thiopental as an example

  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

The effect of obesity on the shape of drug disposition curves was explained using the residence time concept without assuming well-mixed compartments. The mean (MDRT) and relative dispersion \({({\rm RD}_{\rm D}^2)}\) of disposition residence time of drug were predicted as function of percentage body fat by lumping the organs into fat and nonfat tissues, utilizing the fact that MDRT and \({{\rm RD}_{\rm D}^2}\) act as a scale and shape parameter of disposition curves, respectively. The longer sojourn time of lipophilic drugs in adipose tissue leads to an increase in \({{\rm RD}_{\rm D}^2}\) when the fraction of body fat increases. This explains the change in the shape of disposition curves observed in obese patients, where the increase in MDRT is accompanied by a proportionately great prolongation of the terminal half life. The model also predicts a decrease in whole body distribution clearance with increasing residence time dispersion \({({\rm RD}_{\rm D}^2)}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\({C_{\rm D}(t)}\) :

Drug disposition curve after i.v. bolus injection

MDRT:

Mean disposition residence time

VDRT:

Variance of disposition residence time

\({{\rm RD}_{\rm D}^2}\) :

Relative dispersion of disposition residence time

\({{\rm RD}_{\rm C}^2}\) :

Relative dispersion of circulatory transit time

\({{\rm RD}_{\rm B}^2}\) :

Relative dispersion of vascular transit time

CL:

Total elimination clearance

\({{\widetilde{\rm CL}}}\) :

CL/(Body weight) = CL/V body

CLM :

Whole body distribution clearance

Q :

Cardiac output

i = F:

Fat tissue

i = NF:

Nonfat tissue

Q i :

Blood flow to tissue i

qF:

\({Q_{\rm F}/Q}\)

E :

Total extraction ratio (= CL/Q)

\({K_{{\rm p},i}}\) :

Tissue:plasma partition coefficient of tissue i

\({k_{\rm F}}\) :

\({K_{{\rm p,F}}/K_{{\rm p,NF}}}\)

V i :

Physiological volume of tissue i

bf:

\({V_{\rm F}/V_{\rm body}}\)

V ss :

Volume of distribution at steady-state

\({\tilde{V}_{\rm ss}}\) :

\({V_{\rm ss}/V_{\rm body}}\)

V z :

Terminal distribution volume

t 1/2,z :

Terminal half-live

References

  1. Stein CJ, Colditz GA (2004) The epidemic of obesity. J Clin Endocrinol Metab 89: 2522–2525

    Article  CAS  PubMed  Google Scholar 

  2. Blouin RA, Warren GW (1999) Pharmacokinetic considerations in obesity. J Pharm Sci 88: 1–7

    Article  CAS  PubMed  Google Scholar 

  3. Cheymol G (2000) Effects of obesity on pharmacokinetics implications for drug therapy. Clin Pharmacokinet 39: 215–231

    Article  CAS  PubMed  Google Scholar 

  4. Bouillon T, Shafer SL (1998) Does size matter. Anesthesiology 89: 557–560

    Article  CAS  PubMed  Google Scholar 

  5. Casati A, Putzu M (2005) Anesthesia in the obese patient: pharmacokinetic considerations. J Clin Anesth 17: 134–145

    Article  CAS  PubMed  Google Scholar 

  6. Brodie BB, Bernstein E, Mark LC (1952) The role of body fat in limiting the duration of action of thiopental. J Pharmacol Exp Ther 105: 421–426

    CAS  PubMed  Google Scholar 

  7. Jung D, Mayersohn M, Perrier D, Calkins J, Saunders R (1982) Thiopental disposition in lean and obese patients undergoing surgery. Anesthesiology 56: 269–274

    Article  CAS  PubMed  Google Scholar 

  8. Russo H, Bressolle F (1998) Pharmacodynamics and pharmacokinetics of thiopental. Clin Pharmacokinet 35: 95–134

    Article  CAS  PubMed  Google Scholar 

  9. Wada DR, Bjorkman S, Ebling WF, Harashima H, Harapat SR, Stanski DR (1997) Computer simulation of the effects of alterations in blood flows and body composition on thiopental pharmacokinetics in humans. Anesthesiology 87: 884–899

    Article  CAS  PubMed  Google Scholar 

  10. Weiss M, Krejcie TC, Avram MJ (2007) A minimal physiological model of thiopental distribution kinetics based on a multiple indicator approach. Drug Metab Disp 35: 1525–1532

    Article  CAS  Google Scholar 

  11. Weiss M (1986) Generalizations in linear pharmacokinetics using properties of certain classes of residence time distributions. I. Log-convex drug disposition curves. J Pharmacokinet Biopharm 14: 635–657

    Article  CAS  PubMed  Google Scholar 

  12. Weiss M (1992) The relevance of residence time theory to pharmacokinetics. Eur J Clin Pharmacol 43: 571–579

    Article  CAS  PubMed  Google Scholar 

  13. Weiss M (2007) Residence time dispersion as a general measure of drug distribution kinetics: estimation and physiological interpretation. Pharm Res 24: 2025–2030

    Article  CAS  PubMed  Google Scholar 

  14. Weiss M, Krejcie TC, Avram MJ (2006) Transit time dispersion in the pulmonary and systemic circulation: effects of cardiac output and solute diffusivity. Am J Physiol Heart Circ Physiol 291: H861–870

    Article  CAS  PubMed  Google Scholar 

  15. Bjorkman S (2002) Prediction of the volume of distribution of a drug: which tissue–plasma partition coefficients are needed. J Pharm Pharmacol 54: 1237–1245

    Article  CAS  PubMed  Google Scholar 

  16. Weiss M (1983) Hemodynamic influences upon the variance of disposition residence time distribution of drugs. J Pharmacokinet Biopharm 11: 63–75

    Article  CAS  PubMed  Google Scholar 

  17. Weiss M (1995) Distribution kinetics in the body and single organs: moment analysis. In: D’Argenio DZ(eds) Advanced methods of pharmacokinetic and pharmacodynamic system analysis. Plenum Press, New York, pp 89–100

    Google Scholar 

  18. Weiss M, Krejcie TC, Avram MJ (2007) Circulatory transport and capillary-tissue exchange as determinants of the distribution kinetics of inulin and antipyrine in dog. J Pharm Sci 96: 913–926

    Article  CAS  PubMed  Google Scholar 

  19. Weiss M (1983) Use of gamma distributed residence times in pharmacokinetics. Eur J Clin Pharmacol 25: 695–702

    Article  CAS  PubMed  Google Scholar 

  20. PriorBM, Cureton KJ, Modlesky CM, Evans EM, Sloniger MA, Saunders M, Lewis RD (1997) In vivo validation of whole body composition estimates from dual-energy X-ray absorptiometry. J Appl Physiol 83: 623–630

    CAS  PubMed  Google Scholar 

  21. Collis T, Devereux RB, Roman MJ, de Simone G, Yeh J, Howard BV, Fabsitz RR, Welty TK (2001) Relations of stroke volume and cardiac output to body composition: the strong heart study. Circulation 103: 820–825

    CAS  PubMed  Google Scholar 

  22. Kabon B, Nagele A, Reddy D, Eagon C, Fleshman JW, Sessler DI, Kurz A (2004) Obesity decreases perioperative tissue oxygenation. Anesthesiology 100: 274–280

    Article  PubMed  Google Scholar 

  23. Coppack SW (2005) Adipose tissue changes in obesity. Biochem Soc Trans 33: 1049–1052

    Article  CAS  PubMed  Google Scholar 

  24. Ebling WF, Wada DR, Stanski DR (1994) From piecewise to full physiologic pharmacokinetic modeling: applied to thiopental disposition in the rat. J Pharmacokinet Biopharm 22: 259–292

    Article  CAS  PubMed  Google Scholar 

  25. D’Argenio DZ, Schumitzky A (1997) ADAPT II User’s guide: pharmacokinetic pharmacodynamic systems analysis software. Biomedical Simulations Resource, Los Angeles

    Google Scholar 

  26. Deurenberg P, Yap M, van Staveren WA (1998) Body mass index and percent body fat: a meta analysis among different ethnic groups. Int J Obes Relat Metab Disord 22: 1164–1171

    Article  CAS  PubMed  Google Scholar 

  27. Greenblatt DJ, Abernethy DR, Locniskar A, Harmatz JS, Limjuco RA, Shader RI (1984) Effect of age, gender, and obesity on midazolam kinetics. Anesthesiology 61: 27–35

    CAS  PubMed  Google Scholar 

  28. Steiner SH, Moor MJ, Bickel MH (1991) Kinetics of distribution and adipose tissue storage as a function of lipophilicity and chemical structure.. I. Barbiturates Drug Metab Dispos 19: 8–14

    CAS  Google Scholar 

  29. Poulin P, Schoenlein K, Theil FP (2001) Prediction of adipose tissue: plasma partition coefficients for structurally unrelated drugs. J Pharm Sci 90: 436–447

    Article  CAS  PubMed  Google Scholar 

  30. Mclean AJ, Le Couteur DG (2004) Aging biology and geriatric clinical pharmacology. Pharmacol Rev 56: 163–184

    Article  CAS  PubMed  Google Scholar 

  31. Krejcie TC, Avram MJ (1999) What determines anesthetic induction dose? It’s the front-end kinetics, doctor!. Anesth Analg 89: 541–544

    Article  CAS  PubMed  Google Scholar 

  32. Avram MJ, Krejcie TC (2003) Using front-end kinetics to optimize target-controlled drug infusions. Anesthesiology 99: 1078–1086

    Article  PubMed  Google Scholar 

  33. De Baerdemaeker LEC, Mortier EP, Struys MMRF (2004) Pharmacokinetic in obese patients. Contin Educ Anaesth Crit Care Pain 4: 152–155

    Article  Google Scholar 

  34. Turcant A, Delhumeau A, Premel-Cabic A, Granry JC, Cottineau C, Six P, Allain P (1985) Thiopental pharmacokinetics under conditions of long-term infusion. Anesthesiology 63: 50–54

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Weiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss, M. How does obesity affect residence time dispersion and the shape of drug disposition curves? Thiopental as an example. J Pharmacokinet Pharmacodyn 35, 325–336 (2008). https://doi.org/10.1007/s10928-008-9090-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-008-9090-8

Keywords

Navigation