Skip to main content
Log in

Transcriptomic Response of Superworm in Facilitating Polyethylene Biodegradation

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Plastics are a serious cause of environmental pollution, and microplastics pose a threat to human health. To solve this problem, the plastic-degrading mechanism of insect larvae is being investigated. The aim of this study was to examine the metabolic pathways involved in polyethylene metabolism, the interaction between the host and microorganisms, and the role of superworms in promoting plastic degradation in polyethylene-fed superworms. Through host transcriptomic analysis, we identified 429 up-regulated and 777 down-regulated genes and analyzed their functions using the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology databases. We found that insects promote the degradation of polyethylene through two main mechanisms. First, polyethylene metabolites activate the lipid metabolism pathway in insects, promoting the synthesis of carboxylic ester hydrolases and accelerating polyethylene degradation. Second, insect larvae generate reactive oxygen species (ROS) which are critical for insect immune responses and for the initial oxidation of polyethylene. In metagenomic analysis, bacterial species, such as Citrobacter sp. and Raoultella sp., which are known to be involved in the degradation of polyethylene and its metabolites, were more abundant in the guts of insects that consumed polyethylene. In addition, increases in the concentration of peroxide in the gut and the activity of esterase (lipase) acting on lipophilic substrates were observed. Furthermore, we suggest that xenobiotic metabolism is critical for polyethylene metabolism in superworm guts. In particular, enzymes involved in xenobiotic metabolism phase 2, such as glutathione S-transferase and uridine diphosphate glycosyltransferase, convert lipophilic plastic degradation intermediates into water-soluble forms and promote polyethylene degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The RNA sequence data have been deposited in the NCBI database under ID codes PRJNA954984, SRR24150553–SRR24150558.

References

  1. Tournier V, Duquesne S, Guillamot F, Cramail H, Taton D, Marty A, Andre I (2023) : Enzymes’ Power for Plastics Degradation. Chem Rev

  2. Ali SS, Elsamahy T, Al-Tohamy R, Zhu D, Mahmoud YA, Koutra E, Metwally MA, Kornaros M, Sun J (2021) Plastic wastes biodegradation: mechanisms, challenges and future prospects. Sci Total Environ 780:146590

    Article  CAS  PubMed  Google Scholar 

  3. Yang J, Yang Y, Wu WM, Zhao J, Jiang L (2014) Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol 48(23):13776–13784

    Article  CAS  PubMed  Google Scholar 

  4. Yang Y, Yang J, Wu WM, Zhao J, Song Y, Gao L, Yang R, Jiang L (2015) Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: part 1. Chemical and physical characterization and isotopic tests. Environ Sci Technol 49(20):12080–12086

    Article  CAS  PubMed  Google Scholar 

  5. Peng BY, Chen Z, Chen J, Yu H, Zhou X, Criddle CS, Wu WM, Zhang Y (2020) Biodegradation of polyvinyl chloride (PVC) in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae. Environ Int 145:106106

    Article  CAS  PubMed  Google Scholar 

  6. Yang Y, Wang J, Xia M (2020) Biodegradation and mineralization of polystyrene by plastic-eating superworms Zophobas atratus. Sci Total Environ 708:135233

    Article  CAS  PubMed  Google Scholar 

  7. Wang Y, Luo L, Li X, Wang J, Wang H, Chen C, Guo H, Han T, Zhou A, Zhao X (2022) Different plastics ingestion preferences and efficiencies of superworm (Zophobas atratus Fab.) And yellow mealworm (Tenebrio molitor Linn.) Associated with distinct gut microbiome changes. Sci Total Environ 837:155719

    Article  CAS  PubMed  Google Scholar 

  8. Cassone BJ, Grove HC, Elebute O, Villanueva SMP, LeMoine CMR (2020) Role of the intestinal microbiome in low-density polyethylene degradation by caterpillar larvae of the greater wax moth, Galleria mellonella. Proc Biol Sci 287(1922):20200112

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang Y, Yang J, Wu WM, Zhao J, Song Y, Gao L, Yang R, Jiang L (2015) Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: part 2. Role of gut microorganisms. Environ Sci Technol 49(20):12087–12093

    Article  CAS  PubMed  Google Scholar 

  10. Kim HR, Lee HM, Yu HC, Jeon E, Lee S, Li J, Kim DH (2020) Biodegradation of Polystyrene by Pseudomonas sp. Isolated from the gut of Superworms (Larvae of Zophobas atratus). Environ Sci Technol 54(11):6987–6996

    Article  CAS  PubMed  Google Scholar 

  11. Luo L, Wang Y, Guo H, Yang Y, Qi N, Zhao X, Gao S, Zhou A (2021) Biodegradation of foam plastics by Zophobas atratus larvae (Coleoptera: Tenebrionidae) associated with changes of gut digestive enzymes activities and microbiome. Chemosphere 282:131006

    Article  CAS  PubMed  Google Scholar 

  12. Lou Y, Ekaterina P, Yang SS, Lu B, Liu B, Ren N, Corvini PF, Xing D (2020) Biodegradation of Polyethylene and Polystyrene by Greater Wax Moth Larvae (Galleria mellonella L.) and the Effect of Co-diet Supplementation on the Core Gut Microbiome. Environ Sci Technol 54(5):2821–2831

    Article  CAS  PubMed  Google Scholar 

  13. Brandon AM, Gao SH, Tian R, Ning D, Yang SS, Zhou J, Wu WM, Criddle CS (2018) Biodegradation of Polyethylene and Plastic Mixtures in Mealworms (Larvae of Tenebrio molitor) and Effects on the gut Microbiome. Environ Sci Technol 52(11):6526–6533

    Article  CAS  PubMed  Google Scholar 

  14. Cassone BJ, Grove HC, Kurchaba N, Geronimo P, LeMoine CMR (2022) Fat on plastic: metabolic consequences of an LDPE diet in the fat body of the greater wax moth larvae (Galleria mellonella). J Hazard Mater 425:127862

    Article  CAS  PubMed  Google Scholar 

  15. Sanluis-Verdes A, Colomer-Vidal P, Rodriguez-Ventura F, Bello-Villarino M, Spinola-Amilibia M, Ruiz-Lopez E, Illanes-Vicioso R, Castroviejo P, Aiese Cigliano R, Montoya M et al (2022) Wax worm saliva and the enzymes therein are the key to polyethylene degradation by Galleria mellonella. Nat Commun 13(1):5568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kundungal H, Gangarapu M, Sarangapani S, Patchaiyappan A, Devipriya SP (2019) Efficient biodegradation of polyethylene (HDPE) waste by the plastic-eating lesser waxworm (Achroia grisella). Environ Sci Pollut Res Int 26(18):18509–18519

    Article  CAS  PubMed  Google Scholar 

  17. Brandon AM, Garcia AM, Khlystov NA, Wu WM, Criddle CS (2021) Enhanced bioavailability and Microbial Biodegradation of Polystyrene in an Enrichment Derived from the gut microbiome of Tenebrio molitor (Mealworm Larvae). Environ Sci Technol 55(3):2027–2036

    Article  CAS  PubMed  Google Scholar 

  18. Zhong Z, Nong W, Xie Y, Hui JHL, Chu LM (2022) Long-term effect of plastic feeding on growth and transcriptomic response of mealworms (Tenebrio molitor L). Chemosphere 287(Pt 1):132063

    Article  CAS  PubMed  Google Scholar 

  19. Kong HG, Kim HH, Chung JH, Jun J, Lee S, Kim HM, Jeon S, Park SG, Bhak J, Ryu CM (2019) The Galleria mellonella Hologenome supports microbiota-independent metabolism of Long-Chain Hydrocarbon Beeswax. Cell Rep 26(9):2451–2464e2455

    Article  CAS  PubMed  Google Scholar 

  20. Peng BY, Li Y, Fan R, Chen Z, Chen J, Brandon AM, Criddle CS, Zhang Y, Wu WM (2020) Biodegradation of low-density polyethylene and polystyrene in superworms, larvae of Zophobas atratus (Coleoptera: Tenebrionidae): broad and limited extent depolymerization. Environ Pollut 266(Pt 1):115206

    Article  CAS  PubMed  Google Scholar 

  21. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25

    Article  PubMed  PubMed Central  Google Scholar 

  22. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li G, Shi M, Zhao S, Li D, Long Y, Yang C, Zhu Y (2020) RNA-Seq comparative analysis reveals the response of Enterococcus faecalis TV4 under fluoride exposure. Gene 726:144197

    Article  CAS  PubMed  Google Scholar 

  24. Li G, Shi M, Zhao S, Long Y, Zhu Y (2019) Toxicity response of silkworm intestine to Bacillus cereus SW7-1 pathogen. Sci Total Environ 692:1282–1290

    Article  CAS  PubMed  Google Scholar 

  25. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Navas-Molina JA, Peralta-Sanchez JM, Gonzalez A, McMurdie PJ, Vazquez-Baeza Y, Xu Z, Ursell LK, Lauber C, Zhou H, Song SJ et al (2013) Advancing our understanding of the human microbiome using QIIME. Methods Enzymol 531:371–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kuczynski J, Stombaugh J, Walters WA, Gonzalez A, Caporaso JG, Knight R (2012) : Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Curr Protoc Microbiol Chap. 1:Unit 1E 5.

  28. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461

    Article  CAS  PubMed  Google Scholar 

  29. Rognes T, Flouri T, Nichols B, Quince C, Mahe F (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584

    Article  PubMed  PubMed Central  Google Scholar 

  30. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41(Database issue):D590–596

    CAS  PubMed  Google Scholar 

  31. Price MN, Dehal PS, Arkin AP (2009) FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26(7):1641–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26(2):266–267

    Article  CAS  PubMed  Google Scholar 

  33. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. McDonald D, Clemente JC, Kuczynski J, Rideout JR, Stombaugh J, Wendel D, Wilke A, Huse S, Hufnagle J, Meyer F et al (2012) The Biological Observation Matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome. GigaScience 1:7–7

    Article  PubMed  PubMed Central  Google Scholar 

  35. Soergel DA, Dey N, Knight R, Brenner SE (2012) Selection of primers for optimal taxonomic classification of environmental 16S rRNA gene sequences. ISME J 6(7):1440–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Saito M, Seki M, Iida K, Nakayama H, Yoshida S (2007) A novel agar medium to detect hydrogen peroxide-producing bacteria based on the prussian blue-forming reaction. Microbiol Immunol 51(9):889–892

    Article  CAS  PubMed  Google Scholar 

  37. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  38. Adlan NA, Sabri S, Masomian M, Ali MSM, Rahman R (2020) Microbial Biodegradation of Paraffin Wax in malaysian crude oil mediated by degradative enzymes. Front Microbiol 11:565608

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zadjelovic V, Erni-Cassola G, Obrador-Viel T, Lester D, Eley Y, Gibson MI, Dorador C, Golyshin PN, Black S, Wellington EMH et al (2022) A mechanistic understanding of polyethylene biodegradation by the marine bacterium Alcanivorax. J Hazard Mater 436:129278

    Article  CAS  PubMed  Google Scholar 

  40. Lamb CA, Dooley HC, Tooze SA (2013) Endocytosis and autophagy: Shared machinery for degradation. BioEssays 35(1):34–45

    Article  CAS  PubMed  Google Scholar 

  41. Esteves F, Rueff J, Kranendonk M (2021) The Central Role of Cytochrome P450 in Xenobiotic Metabolism-A brief review on a fascinating enzyme family. J Xenobiot 11(3):94–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zampolli J, Orro A, Manconi A, Ami D, Natalello A, Di Gennaro P (2021) Transcriptomic analysis of Rhodococcus opacus R7 grown on polyethylene by RNA-seq. Sci Rep 11(1):21311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Koirala BKS, Moural T, Zhu F (2022) Functional and structural diversity of insect glutathione S-transferases in Xenobiotic Adaptation. Int J Biol Sci 18(15):5713–5723

    Article  Google Scholar 

  44. Mohanan N, Montazer Z, Sharma PK, Levin DB (2020) Microbial and enzymatic degradation of Synthetic Plastics. Front Microbiol 11:580709

    Article  PubMed  PubMed Central  Google Scholar 

  45. Weers PM, Ryan RO (2006) Apolipophorin III: role model apolipoprotein. Insect Biochem Mol Biol 36(4):231–240

    Article  CAS  PubMed  Google Scholar 

  46. Borst P, Zelcer N, van Helvoort A (2000) ABC transporters in lipid transport. Biochim Biophys Acta 1486(1):128–144

    Article  CAS  PubMed  Google Scholar 

  47. Pols MS, Klumperman J (2009) Trafficking and function of the tetraspanin CD63. Exp Cell Res 315(9):1584–1592

    Article  CAS  PubMed  Google Scholar 

  48. Patnaik BB, Kang SM, Seo GW, Lee HJ, Patnaik HH, Jo YH, Tindwa H, Lee YS, Lee BL, Kim NJ et al (2013) Molecular cloning, sequence characterization and expression analysis of a CD63 homologue from the coleopteran beetle, Tenebrio molitor. Int J Mol Sci 14(10):20744–20767

    Article  PubMed  PubMed Central  Google Scholar 

  49. Arockiaraj J, Gnanam AJ, Muthukrishnan D, Thirumalai MK, Pasupuleti M, Milton J, Kasi M (2013) Macrobrachium rosenbergii cathepsin L: molecular characterization and gene expression in response to viral and bacterial infections. Microbiol Res 168(9):569–579

    Article  CAS  PubMed  Google Scholar 

  50. Mettlen M, Chen PH, Srinivasan S, Danuser G, Schmid SL (2018) Regulation of clathrin-mediated endocytosis. Annu Rev Biochem 87:871–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kuraishi T, Binggeli O, Opota O, Buchon N, Lemaitre B (2011) Genetic evidence for a protective role of the peritrophic matrix against intestinal bacterial infection in Drosophila melanogaster. Proc Natl Acad Sci U S A 108(38):15966–15971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li J, Kim HR, Lee HM, Yu HC, Jeon E, Lee S, Kim DH (2020) Rapid biodegradation of polyphenylene sulfide plastic beads by Pseudomonas sp. Sci Total Environ 720:137616

    Article  CAS  PubMed  Google Scholar 

  53. Collins JW, Keeney KM, Crepin VF, Rathinam VA, Fitzgerald KA, Finlay BB, Frankel G (2014) Citrobacter rodentium: infection, inflammation and the microbiota. Nat Rev Microbiol 12(9):612–623

    Article  CAS  PubMed  Google Scholar 

  54. Wirth F, Goldani LZ (2012) Epidemiology of Rhodotorula: an emerging pathogen. Interdiscip Perspect Infect Dis 2012:465717

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chen WJ, Hsieh FC, Hsu FC, Tasy YF, Liu JR, Shih MC (2014) Characterization of an insecticidal toxin and pathogenicity of Pseudomonas taiwanensis against insects. PLoS Pathog 10(8):e1004288

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mikonranta L, Mappes J, Kaukoniitty M, Freitak D (2014) Insect immunity: oral exposure to a bacterial pathogen elicits free radical response and protects from a recurring infection. Front Zool 11(1):23

    Article  PubMed  PubMed Central  Google Scholar 

  57. Yeom SJ, Le TK, Yun CH (2022) P450-driven plastic-degrading synthetic bacteria. Trends Biotechnol 40(2):166–179

    Article  CAS  PubMed  Google Scholar 

  58. Mittapalli O, Neal JJ, Shukle RH (2007) Antioxidant defense response in a galling insect. Proc Natl Acad Sci U S A 104(6):1889–1894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wei R, Zimmermann W (2017) Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we? Microb Biotechnol 10(6):1308–1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Amezian D, Nauen R, Le Goff G (2021) Transcriptional regulation of xenobiotic detoxification genes in insects - an overview. Pestic Biochem Physiol 174:104822

    Article  CAS  PubMed  Google Scholar 

  61. Kim HR, Lee C, Shin H, Kim J, Jeong M, Choi D (2023) Isolation of a polyethylene-degrading bacterium, Acinetobacter guillouiae, using a novel screening method based on a redox indicator. Heliyon 9(5):e15731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Tech Incubator Program for Startup (TIPS) funded by the Ministry of SMEs (Small and Medium Enterprises) and Startups, Republic of Korea (No. S3136229).

Author information

Authors and Affiliations

Authors

Contributions

Hong Rae Kim: Conceptualization, Investigation, Data Curation, Visualization, Writing – Original Draft, Chaerin Lee: Investigation, Hyeyoung Shin: Investigation, Hye Yeon Koh: Investigation, Sukkyoo Lee: Supervision, Writing – Review & Editing, Donggeon Choi: Validation, Investigation, Project administration, Writing – Review & Editing.

Corresponding author

Correspondence to Donggeon Choi.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.R., Lee, C., Shin, H. et al. Transcriptomic Response of Superworm in Facilitating Polyethylene Biodegradation. J Polym Environ 32, 1658–1671 (2024). https://doi.org/10.1007/s10924-023-03029-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-03029-z

Keywords

Navigation