Skip to main content

Advertisement

Log in

Designing and Evaluating pH-Responsive Electrospun Eudragit® L-100/Hydroxypropyl Methyl Cellulose Composite Mats for Release of Propolis as a Novel Wound Dressing

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Alkaline pH levels in chronic wounds increase the risk of bacterial accumulation. Therefore, the pH value is a key factor in the wound healing process. In this regard, an attempt was made to introduce a new composite nanofiber for the treatment of chronic wounds. In this wound dressing, the composite of Eudragit® L-100 (EU), which dissolves only at pH above 6, and hydroxypropyl methyl cellulose (EU/HPMC) was used to load propolis (PRO), which has antibacterial and antioxidant properties. We investigated the morphological and physicochemical properties of this new pH-sensitive mat composed of different blending ratios of EU/HPMC/PRO. The scanning electron microscope (SEM) images exhibited that by increasing the propolis content in the range of 10–30% v/v, the average diameter of nanofibers increased from 589.82 ± 102.5 to 676.01 ± 127.3 nm. The results of Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis, mechanical properties, and water contact angle of mats confirmed the successful loading of PRO into the nanofibers. In addition, we evaluated the antibacterial properties of optimal mat against Staphylococcus aureus (Gram positive) and Escherichia coli (Gram negative) bacteria, cell proliferation, and cell adhesion. Finally, we compared the release rate of propolis from nanofibers in media at pH 7.4 and 5.5. The results showed that the EU/HPMC/PRO nanofibers had good potential to be used as a wound dressing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Lambers H, Piessens S, Bloem A et al (2006) Natural skin surface pH is on average below 5, which is beneficial for its resident flora. Int J Cosmet Sci 28:359–370. https://doi.org/10.1111/j.1467-2494.2006.00344.x

    Article  CAS  PubMed  Google Scholar 

  2. Sochorová M, Staňk K, Pullmannová P et al (2017) Permeability barrier and microstructure of skin lipid membrane models of impaired Glucosylceramide Processing. Sci Rep 6470:1–8. https://doi.org/10.1038/s41598-017-06990-7

    Article  CAS  Google Scholar 

  3. Sharpe JR, Harris KL, Jubin K et al (2009) The effect of pH in modulating skin cell behaviour. Br J Dermatol 161:671–673. https://doi.org/10.1111/j.1365-2133.2009.09168.x

    Article  CAS  PubMed  Google Scholar 

  4. Alexander L, Andreas S, Grabbe S, Dissemond J (2007) Influence of pH on wound-healing: a new perspective for wound-therapy? Arch Dermatol Res 298:413–420. https://doi.org/10.1007/s00403-006-0713-x

    Article  Google Scholar 

  5. Mostafalu P, Tamayol A, Rahimi R et al (2018) Smart Bandage for Monitoring and Treatment of Chronic Wounds. Small 14:1703509. https://doi.org/10.1002/smll.201703509

    Article  CAS  Google Scholar 

  6. Kiaee G, Mostafalu P, Samandari M, Sonkusale S (2018) A pH-Mediated electronic wound dressing for controlled drug delivery. Adv Healthc Mater 7:1800396. https://doi.org/10.1002/adhm.201800396

    Article  CAS  Google Scholar 

  7. Mariani F, Sera M, Gualandi I et al (2021) Advanced Wound Dressing for Real-Time pH monitoring. ACS Sens 6:2366–2377. https://doi.org/10.1021/acssensors.1c00552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kouchak M, Handali S, Naseri B (2015) Evaluation of the Mechanical Properties and Drug Permeability of Chitosan / Eudragit RL Composite Film. Osong Public Heal Res Perspect 6:14–19. https://doi.org/10.1016/j.phrp.2014.12.001

    Article  Google Scholar 

  9. Fan Y, Wu W, Lei Y et al (2019) Edaravone-Loaded Alginate-Based Nanocomposite Hydrogel Accelerated Chronic Wound Healing in Diabetic mice. Mar Drugs 17:285. https://doi.org/10.3390/md17050285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wittaya-Areekul S, Prahsarn CSS (2006) Development and in Vitro evaluation of Chitosan – Eudragit RS 30D Composite Wound Dressings. AAPS PharmSciTech 7:E215–E220. https://doi.org/10.1208/pt070130

    Article  PubMed  PubMed Central  Google Scholar 

  11. Feleke F, Balzus B, Gerecke C et al (2016) Formulation and in vitro evaluation of polymeric enteric nanoparticles as dermal carriers with pH-dependent targeting potential. Eur J Pharm Sci 92:98–109. https://doi.org/10.1016/j.ejps.2016.07.004

    Article  CAS  Google Scholar 

  12. Dong P, Feleke F, Lohan SB et al (2019) pH-sensitive Eudragit ® L 100 nanoparticles promote cutaneous penetration and drug release on the skin. J Control Release 295:214–222. https://doi.org/10.1016/j.jconrel.2018.12.045

    Article  CAS  PubMed  Google Scholar 

  13. Xue J, Xie J, Liu W, Xia Y (2017) Electrospun Nano fi bers: New Concepts, Materials, and Applications. https://doi.org/10.1021/acs.accounts.7b00218

  14. Goyal R, Macri LK, Kaplan HMKJ (2016) Nanoparticles and nano fi bers for topical drug delivery. J Control Release 240:77–92. https://doi.org/10.1016/j.jconrel.2015.10.049

    Article  CAS  PubMed  Google Scholar 

  15. Oryan A, Alemzadeh E, Moshiri A (2018) Potential role of propolis in wound healing: Biological properties and therapeutic activities. Biomed Pharmacother 98:469–483. https://doi.org/10.1016/j.biopha.2017.12.069

    Article  CAS  PubMed  Google Scholar 

  16. Meimandi-Parizi A, Oryan A, Sayahi E, Bigham-Sadegh A (2018) Propolis extract a new reinforcement material in improving bone healing: an in vivo study. Int J Surg 56:94–101. https://doi.org/10.1016/j.ijsu.2018.06.006

    Article  PubMed  Google Scholar 

  17. Wagh VD (2013) Propolis: a wonder bees product and its pharmacological potentials. Adv Pharmacol Sci 2013. https://doi.org/10.1155/2013/308249

  18. Braia M, Tubio G, Nerli B et al (2012) Analysis of the interactions between Eudragit ® L100 and porcine pancreatic trypsin by calorimetric techniques. Int J Biol Macromol 50:180–186. https://doi.org/10.1016/j.ijbiomac.2011.10.016

    Article  CAS  PubMed  Google Scholar 

  19. Mohebian Z, Tajmohammadi I, Yavari Maroufi L et al (2022) A Novel Aloe Vera-Loaded Ethylcellulose/Hydroxypropyl methylcellulose nanofibrous mat designed for Wound Healing Application. J Polym Environ 30:867–877. https://doi.org/10.1007/s10924-021-02240-0

    Article  CAS  Google Scholar 

  20. Akrami-Hasan-Kohal M, Tayebi L, Ghorbani M (2020) Curcumin-loaded naturally-based nanofibers as active wound dressing mats: morphology, drug release, cell proliferation, and cell adhesion studies. New J Chem 44:10343–10351. https://doi.org/10.1039/D0NJ01594F

    Article  CAS  Google Scholar 

  21. Yavari Maroufi L, Ghorbani M, Mohammadi M, Pezeshki A (2021) Improvement of the physico-mechanical properties of antibacterial electrospun poly lactic acid nanofibers by incorporation of guar gum and thyme essential oil. Colloids Surf Physicochem Eng Asp 622:126659. https://doi.org/10.1016/j.colsurfa.2021.126659

    Article  CAS  Google Scholar 

  22. Ghorbani M, Nezhad-Mokhtari P, Sohrabi H, Roshangar L (2020) Electrospun chitosan/nanocrystalline cellulose-graft-poly(N-vinylcaprolactam) nanofibers as the reinforced scaffold for tissue engineering. J Mater Sci 55:2176–2185. https://doi.org/10.1007/s10853-019-04115-1

    Article  CAS  Google Scholar 

  23. Ghorbani M, Mahmoodzadeh F, Yavari Maroufi L, Nezhad-Mokhtari P (2020) Electrospun tetracycline hydrochloride loaded zein/gum tragacanth/poly lactic acid nanofibers for biomedical application. Int J Biol Macromol 165:1312–1322. https://doi.org/10.1016/j.ijbiomac.2020.09.225

    Article  CAS  PubMed  Google Scholar 

  24. Akrami-Hasan-Kohal M, Ghorbani M, Mahmoodzadeh F, Nikzad B (2020) Development of reinforced aldehyde-modified kappa-carrageenan/gelatin film by incorporation of halloysite nanotubes for biomedical applications. Int J Biol Macromol 160:669–676. https://doi.org/10.1016/j.ijbiomac.2020.05.222

    Article  CAS  PubMed  Google Scholar 

  25. Mohebian Z, Yavari Maroufi L, Ghorbani M (2021) Development of a novel reinforced film based on gellan gum/cellulose nanofiber/soy protein for skin tissue engineering application. New J Chem 45:13814–13821. https://doi.org/10.1039/d1nj02623b

    Article  CAS  Google Scholar 

  26. Maroufi LY, Shahabi N, Ghanbarzadeh M, dokht, Ghorbani M (2022) Development of Antimicrobial active food packaging Film based on Gelatin/Dialdehyde quince seed Gum Incorporated with Apple Peel Polyphenols. Food Bioprocess Technol 15:693–705. https://doi.org/10.1016/j.carbpol.2022.119620

    Article  CAS  Google Scholar 

  27. Ahmadian S, Ghorbani M, Mahmoodzadeh F (2020) Silver sulfadiazine-loaded electrospun ethyl cellulose/polylactic acid/collagen nanofibrous mats with antibacterial properties for wound healing. Int J Biol Macromol 162:1555–1565. https://doi.org/10.1016/j.ijbiomac.2020.08.059

    Article  CAS  PubMed  Google Scholar 

  28. Ghorbani M, Ramezani S, Rashidi MR (2021) Fabrication of honey-loaded ethylcellulose/gum tragacanth nanofibers as an effective antibacterial wound dressing. Colloids Surf Physicochem Eng Asp 621:126615. https://doi.org/10.1016/j.colsurfa.2021.126615

    Article  CAS  Google Scholar 

  29. Maroufi NF, Vahedian V, Mazrakhondi SAM et al (2020) Sensitization of MDA-MBA231 breast cancer cell to docetaxel by myricetin loaded into biocompatible lipid nanoparticles via sub-G1 cell cycle arrest mechanism. Naunyn Schmiedebergs Arch Pharmacol 393:1–11

    Article  CAS  PubMed  Google Scholar 

  30. Raeisi S, Chavoshi H, Mohammadi M et al (2019) Naringenin-loaded nano-structured lipid carrier fortifies oxaliplatin-dependent apoptosis in HT-29 cell line. Process Biochem 83:168–175. https://doi.org/10.1016/j.procbio.2019.05.013

    Article  CAS  Google Scholar 

  31. Ghorbani M, Nezhad-Mokhtari P, Ramazani S (2020) Aloe vera-loaded nanofibrous scaffold based on Zein/Polycaprolactone/Collagen for wound healing. Int J Biol Macromol 153:921–930. https://doi.org/10.1016/j.ijbiomac.2020.03.036

    Article  CAS  PubMed  Google Scholar 

  32. Doustdar F, Ghorbani M (2022) ZIF-8 enriched electrospun ethyl cellulose / polyvinylpyrrolidone scaffolds: the key role of polyvinylpyrrolidone molecular weight. Carbohydr Polym 291:119620. https://doi.org/10.1016/j.carbpol.2022.119620

    Article  CAS  PubMed  Google Scholar 

  33. Doustdar F, Ramezani S, Ghorbani M, Moghadam FM (2022) Optimization and characterization of a novel tea tree oil-integrated poly (ε-caprolactone)/soy protein isolate electrospun mat as a wound care system. Int J Pharm 627:122218. https://doi.org/10.1016/j.ijpharm.2022.122218

    Article  CAS  PubMed  Google Scholar 

  34. Bodbodak S, Shahabi N, Mohammadi M et al (2021) Development of a Novel Antimicrobial Electrospun Nanofiber Based on Polylactic Acid/Hydroxypropyl Methylcellulose Containing Pomegranate Peel Extract for Active Food Packaging. Food Bioprocess Technol. https://doi.org/10.1007/s11947-021-02722-y

  35. Marzieh B, Niazmand R (2020) Characterization of polyamide-6 / propolis blended electrospun fi bers. Heliyon 6:e04784. https://doi.org/10.1016/j.heliyon.2020.e04784

    Article  Google Scholar 

  36. Moradkhannejhad L, Abdouss M, Nikfarjam N et al (2018) Electrospinning of zein / propolis nano fi bers; antimicrobial properties and morphology investigation. J Mater Sci Mater Med 29:1–10. https://doi.org/10.1007/s10856-018-6174-x

    Article  CAS  Google Scholar 

  37. Mahdavinia GR, Ettehadi S, Amini M, Sabzi M (2015) Synthesis and characterization of hydroxypropyl methylcellulose-g-poly(acrylamide)/LAPONITE® RD nanocomposites as novel magnetic- and pHsensitive carriers for controlled drug release. RSC Adv 5:44516–44523. https://doi.org/10.1039/C5RA03731J

    Article  CAS  Google Scholar 

  38. Jena PK, Singh S, Prajapati B et al (2014) Impact of targeted specific antibiotic delivery for Gut Microbiota Modulation on High-Fructose-Fed rats. Appl Biochem Biotechnol 172:3810–3826. https://doi.org/10.1007/s12010-014-0772-y

    Article  CAS  PubMed  Google Scholar 

  39. Hegazi AG, El-Houssiny AS, Fouad EA (2019) Egyptian propolis 14: potential antibacterial activity of propolis-encapsulated alginate nanoparticles against different pathogenic bacteria strains. Adv Nat Sci Nanosci Nanotechnol 10:45019. https://doi.org/10.1088/2043-6254/ab52f4

    Article  Google Scholar 

  40. Pastor C, Sánchez-González L, Cháfer M et al (2010) Physical and antifungal properties of hydroxypropylmethylcellulose based films containing propolis as affected by moisture content. Carbohydr Polym 82:1174–1183. https://doi.org/10.1016/j.carbpol.2010.06.051

    Article  CAS  Google Scholar 

  41. In J, Raj H, Sim H et al (2014) Electrospun propolis / polyurethane composite nano fi bers for biomedical applications. Mater Sci Eng C 44:52–57. https://doi.org/10.1016/j.msec.2014.07.062

    Article  CAS  Google Scholar 

  42. Siripatrawan U, Vitchayakitti W (2016) Improving functional properties of chitosan fi lms as active food packaging by incorporating with propolis. Food Hydrocoll 61:695–702. https://doi.org/10.1016/j.foodhyd.2016.06.001

    Article  CAS  Google Scholar 

  43. Sester C, Ofridam F, Lebaz N et al (2020) pH-Sensitive methacrylic acid – methyl methacrylate copolymer Eudragit L100 and dimethylaminoethyl methacrylate, butyl methacrylate, and methyl methacrylate tri-copolymer Eudragit E100 to cite this version : HAL id : hal-02342633 METHACRYLATE TRI-COPOLY. Polym Adv Technol 31:440–450. https://doi.org/10.1002/pat.4780

    Article  CAS  Google Scholar 

  44. Ding C, Zhang M, Li G (2015) Preparation and characterization of collagen / hydroxypropyl methylcellulose (HPMC) blend film. Carbohydr Polym 119:194–201. https://doi.org/10.1016/j.carbpol.2014.11.057

    Article  CAS  PubMed  Google Scholar 

  45. Refaat H, Mady FM, Sarhan HA et al (2021) Optimization and evaluation of propolis liposomes as a promising therapeutic approach for COVID-19. Int J Pharm 592:120028. https://doi.org/10.1016/j.ijpharm.2020.120028

    Article  CAS  PubMed  Google Scholar 

  46. Grecka K, Kuś PM, Okińczyc P et al (2019) The anti-staphylococcal potential of ethanolic polish Propolis extracts. Molecules 24:1732. https://doi.org/10.3390/molecules24091732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kujumgiev A, Tsvetkova I, Serkedjieva Y et al (1999) Antibacterial, antifungal and antiviral activity of propolis of different geographic origin. J Ethnopharmacol 64:235–240. https://doi.org/10.1016/S0378-8741(98)00131-7

    Article  CAS  PubMed  Google Scholar 

  48. Inouye S, Yamaguchi H, Takizawa T (2001) Screening of the antibacterial effects of a variety of essential oils on respiratory tract pathogens, using a modified dilution assay method. J Infect Chemother 7:251–254. https://doi.org/10.1007/s101560170022

    Article  CAS  PubMed  Google Scholar 

  49. Aldana DS, Andrade-Ochoa S, Cristóbal N, Aguilar et al (2015) Antibacterial activity of pectic-based edible films incorporated with mexican lime essential oil. Food Control 50. https://doi.org/10.1016/j.foodcont.2014.10.044

  50. Bilginer R, Umit DO, Yildiz H (2020) Biocomposite scaffolds for 3D cell culture: Propolis enriched polyvinyl alcohol nanofibers favoring cell adhesion. J Appl Polym Sci 138:50287. https://doi.org/10.1002/app.50287

    Article  CAS  Google Scholar 

  51. Ulag S, Ilhan E, Demirhan R et al (2021) Propolis-Based nanofiber patches to repair corneal microbial keratitis. Molecules 26:2577. https://doi.org/10.3390/molecules26092577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bagheri M, Validi M, Gholipour A, Makvandi P, Sharifi E (2022) Chitosan nanofiber biocomposites for potential wound healing applications: antioxidant activity with synergic antibacterial effect. Bioeng Transl Med 7:10254. https://doi.org/10.1002/btm2.10254

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support by the Student Research Committee, Tabriz University of Medical Sciences, Iran (Grant number: 68299).

Author information

Authors and Affiliations

Authors

Contributions

Mahdieh Abdi: Investigation; Methodology; Formal analysis; Data curation; Writing – Original draft.Parvin Zakeri-Milani: Formal analysis; Data curation.Marjan Ghorbani: Supervision, Project administration, Funding acquisition, Conceptualization, Formal analysis, Investigation, Resources, Writing – review & editing, Visualization.All authors reviewed the manuscript.

Corresponding author

Correspondence to Marjan Ghorbani.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethics statement

There are no conflicts to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdi, M., Zakeri-Milani, P. & Ghorbani, M. Designing and Evaluating pH-Responsive Electrospun Eudragit® L-100/Hydroxypropyl Methyl Cellulose Composite Mats for Release of Propolis as a Novel Wound Dressing. J Polym Environ 31, 3215–3229 (2023). https://doi.org/10.1007/s10924-023-02802-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-02802-4

Keywords

Navigation