Skip to main content
Log in

Influence of Biobased Polyurethane Structure on Thermal and Mechanical Properties of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)− Polyurethane Blends

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a promising alternative to petroleum-based polymers, however its high brittleness limits its practical applicability. In this study, two polyurethane elastomers (PUa and PUb) containing poly (ε-caprolactone) or poly(ε-caprolactone)/poly(butylene adipate) as soft segment and different hard segments content (38.16% for PUa and 53.12% for PUb) were synthesized and melt blended with PHBV in various proportions. The addition of 5–15 wt% PU elastomers to PHBV did not significantly change its thermal stability; however, the presence of PUs decreased the crystallization temperature of PHBV by up to 9 °C, and the crystallinity of PHBV decreased from 48.2% to 42.2 or 43.6% in the blends with 15% PUa or PUb, indicating the development of some interactions between PHBV and PUa/PUb. The addition of PUa to PHBV increased its elongation at break by up to 70%, a weaker effect being observed with PUb. Remarkably, a slight variation in the tensile strength and modulus, which remained close to those of neat PHBV, was concomitant with the increased ductility. The fatigue resistance of the selected blends was estimated by a DMA cyclic test under controlled force from − 20 to 70 °C, this test clearly differentiating the blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Muthuraj R, Valerio O, Mekonnen TH (2021) Recent developments in short- and medium-chain-length polyhydroxyalkanoates: production, properties, and applications. Int J Biol Macromol 187:422–440. https://doi.org/10.1016/j.ijbiomac.2021.07.143

    Article  CAS  PubMed  Google Scholar 

  2. Policastro G, Panico A, Fabbricino M (2021) Improving biological production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) co-polymer: a critical review. Rev Environ Sci Biotechnol 20:479–513. https://doi.org/10.1007/s11157-021-09575-z

    Article  CAS  Google Scholar 

  3. López-Cuellar MR, Alba-Flores J, Gracida Rodríguez JN, Pérez-Guevara F (2011) Production of polyhydroxyalkanoates (PHAs) with canola oil as carbon source. Int J Biol Macromol 48:74–80. https://doi.org/10.1016/j.ijbiomac.2010.09.016

    Article  CAS  PubMed  Google Scholar 

  4. Raza ZA, Khalil S, Abid S (2020) Recent progress in development and chemical modification of poly(hydroxybutyrate)-based blends for potential medical applications. Int J Biol Macromol 160:77–100. https://doi.org/10.1016/j.ijbiomac.2020.05.114

    Article  CAS  PubMed  Google Scholar 

  5. Popa MS, Frone AN, Panaitescu DM (2022) Polyhydroxybutyrate blends: a solution for biodegradable packaging? Int J Biol Macromol 207:263–277. https://doi.org/10.1016/j.ijbiomac.2022.02.185

    Article  CAS  PubMed  Google Scholar 

  6. Wang J, Liu S, Huang J, Qu Z (2021) A review on polyhydroxyalkanoate production from agricultural waste biomass: development, advances, circular approach, and challenges. Bioresour Technol 342:126008. https://doi.org/10.1016/j.biortech.2021.126008

    Article  CAS  PubMed  Google Scholar 

  7. Volova T, Kiselev E, Nemtsev I, Lukyanenko А, Sukovatyi A, Kuzmin A, Ryltseva G, Shishatskaya E (2021) Properties of degradable polyhydroxyalkanoates with different monomer compositions. Int J Biol Macromol 182:98–114. https://doi.org/10.1016/j.ijbiomac.2021.04.008

    Article  CAS  PubMed  Google Scholar 

  8. Srubar WV, Wright ZC, Tsui A, Michel AT, Billington SL, Frank CW (2012) Characterizing the effects of ambient aging on the mechanical and physical properties of two commercially available bacterial thermoplastics. Polym Degrad Stab 97:1922–1929. https://doi.org/10.1016/j.polymdegradstab.2012.04.011

    Article  CAS  Google Scholar 

  9. Aramvash A, Hajizadeh-Turchi S, Moazzeni-Zavareh F, Gholami-Banadkuki N, Malek-Sabet N, Akbari-Shahabi Z (2016) Effective enhancement of hydroxyvalerate content of PHBV in Cupriavidus necator and its characterization. Int J Biol Macromol 87:397–404. https://doi.org/10.1016/j.ijbiomac.2016.03.002

    Article  CAS  PubMed  Google Scholar 

  10. Ke Y, Zhang XY, Ramakrishna S, He LM, Wu G (2017) Reactive blends based on polyhydroxyalkanoates: preparation and biomedical application. Mater Sci Eng C 70:1107–1119. https://doi.org/10.1016/j.msec.2016.03.114

    Article  CAS  Google Scholar 

  11. Zytner P, Wu F, Misra M, Mohanty AK (2020) Toughening of biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(ε-caprolactone) blends by in situ reactive compatibilization. ACS Omega 5:14900–14910. https://doi.org/10.1021/acsomega.9b04379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Del Gaudio C, Fioravanzo L, Folin M, Marchi F, Ercolani E, Bianco A (2012) Electrospun tubular scaffolds: on the effectiveness of blending poly(ϵ-caprolactone) with poly(3-hydroxybutyrate-co-3-hydroxyvalerate). J Biomed Mater Res Part B: Appl Biomater 100B:1883–1898. https://doi.org/10.1002/jbm.b.32756

    Article  CAS  Google Scholar 

  13. Ma P, Hristova-Bogaerds DG, Lemstra PJ, Zhang Y, Wang S (2012) Toughening of PHBV/PBS and PHB/PBS blends via in situ compatibilization using dicumyl peroxide as a free-radical grafting initiator. Macromol Mater Eng 297(5):402–410. https://doi.org/10.1002/mame.201100224

    Article  CAS  Google Scholar 

  14. Zhang G, Xie W, Wu D (2020) Selective localization of starch nanocrystals in the biodegradable nanocomposites probed by crystallization temperatures. Carbohydr Polym 227:115341. https://doi.org/10.1016/j.carbpol.2019.115341

    Article  CAS  PubMed  Google Scholar 

  15. Erceg M, Kovačić T, Klarić I (2005) Dynamic thermogravimetric degradation of poly(3-hydroxybutyrate)/ aliphatic–aromatic copolyester blends. Polym Degrad Stab 90(1):86–94. https://doi.org/10.1016/j.polymdegradstab.2005.02.014

    Article  CAS  Google Scholar 

  16. Hoffmann R, Morais DDS, Braz CJF, Haag K, Wellen RMR, Canedo EL, de Carvalho LH, Koschek K (2019) Impact of the natural filler babassu on the processing and properties of PBAT/PHB films. Compos Part A Appl Sci Manuf 124:105472. https://doi.org/10.1016/j.compositesa.2019.105472

    Article  CAS  Google Scholar 

  17. Yilgör I, Yilgör E, Wilkes GL (2015) Critical parameters in designing segmented polyurethanes and their effect on morphology and properties: a comprehensive review. Polymer 58:A1–A36. https://doi.org/10.1016/j.polymer.2014.12.014

    Article  CAS  Google Scholar 

  18. Panaitescu DM, Nicolae CA, Melinte V, Scutaru AL, Gabor AR, Popa MS, Oprea M, Buruiana T (2021) Influence of microfibrillated cellulose and soft biocomponent on the morphology and thermal properties of thermoplastic polyurethanes. J Appl Polym Sci 138:50951. https://doi.org/10.1002/app.50951

    Article  CAS  Google Scholar 

  19. Phattarateera S, Pattamaprom C (2019) Comparative performance of functional rubbers on toughness and thermal property improvement of polylactic acid. Mater Today Commun 19:374–382. https://doi.org/10.1016/j.mtcomm.2019.02.012

    Article  CAS  Google Scholar 

  20. Zhang HC, Kang BH, Chen LS, Lu X (2020) Enhancing toughness of poly (lactic acid)/thermoplastic polyurethane blends via increasing interface compatibility by polyurethane elastomer prepolymer and its toughening mechanism. Polym Test 87:106521. https://doi.org/10.1016/j.polymertesting.2020.106521

    Article  CAS  Google Scholar 

  21. Bedő D, Imre B, Domján A, Schön P, Vancso GJ, Pukánszky B (2017) Coupling of poly(lactic acid) with a polyurethane elastomer by reactive processing. Eur Polym J 97:409–417. https://doi.org/10.1016/j.eurpolymj.2017.10.031

    Article  CAS  Google Scholar 

  22. Hoffmann M, Hermesmann M, Leven M, Leitner W, Müller TE (2022) Semi-crystalline polyoxymethylene-co-polyoxyalkylene multi-block telechels as building blocks for polyurethane applications. Polymers 14(5):882. https://doi.org/10.3390/polym14050882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Levett I, Birkett G, Davies N, Bell A, Langford A, Laycock B, Lant P, Pratt S (2016) Techno-economic assessment of poly-3-hydroxybutyrate (PHB) production from methane—the case for thermophilic bioprocessing. J Environ Chem Eng 4(4):3724–3733. https://doi.org/10.1016/j.jece.2016.07.033

    Article  CAS  Google Scholar 

  24. Wang S, Xiang H, Wang R, Peng C, Zhou Z, Zhu M (2014) Morphology and properties of renewable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) blends with thermoplastic polyurethane. Polym Eng Sci 54:1113–1119. https://doi.org/10.1002/pen.23655

    Article  CAS  Google Scholar 

  25. Olkhov AA, Markin VS, Kosenko RY, Gol’dshtrakh MA, Iordanskii AL (2015) Influence of the film forming procedure on the interaction in polyhydroxybutyrate–polyurethane blends. Russ J Appl Chem 88(2):308–313. https://doi.org/10.1134/S2075113316040249

    Article  CAS  Google Scholar 

  26. Martínez-Abad A, Gonzalez-Ausejo J, María Lagaron J, Cabedo L (2016) Biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/thermoplastic polyurethane blends with improved mechanical and barrier performance. Polym Degrad Stab 132:52–61. https://doi.org/10.1016/j.polymdegradstab.2016.03.039

    Article  CAS  Google Scholar 

  27. Sánchez-Safont EL, Arrillaga A, Anakabe J, Gamez-Perez J, Cabedo L (2019) PHBV/TPU/cellulose compounds for compostable injection molded parts with improved thermal and mechanical performance. J Appl Polym Sci 136:47257. https://doi.org/10.1002/app.47257

    Article  CAS  Google Scholar 

  28. Zorba T, Chrissafis K, Paraskevopoulos KM, Bikiaris DN (2007) Synthesis, characterization and thermal degradation mechanism of three poly(alkylene adipate)s: comparative study. Polym Degrad Stab 92(2):222–230. https://doi.org/10.1016/j.polymdegradstab.2006.11.009

    Article  CAS  Google Scholar 

  29. Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer—polycaprolactone in the 21st century. Prog Polym Sci 35(10):1217–1256. https://doi.org/10.1016/j.progpolymsci.2010.04.002

    Article  CAS  Google Scholar 

  30. Fernandes M, Salvador A, Alves MM, Vicente AA (2020) Factors affecting polyhydroxyalkanoates biodegradation in soil. Polym Degrad Stab 182:109408. https://doi.org/10.1016/j.polymdegradstab.2020.109408

    Article  CAS  Google Scholar 

  31. López-Ibáñez S, Beiras R (2022) Is a compostable plastic biodegradable in the sea? A rapid standard protocol to test mineralization in marine conditions. Sci Total Environ 831:154860. https://doi.org/10.1016/j.scitotenv.2022.154860

    Article  CAS  PubMed  Google Scholar 

  32. Weng Y-X, Wang L, Zhang M, Wang X-L, Wang Y-Z (2013) Biodegradation behavior of P(3HB,4HB)/PLA blends in real soil environments. Polym Test 32(1):60–70. https://doi.org/10.1016/j.polymertesting.2012.09.014

    Article  CAS  Google Scholar 

  33. Lee JH, Park CK, Jung JS, Kim SH (2022) Synthesis of vegetable oil-based hyperbranched polyol via thiol-yne click reaction and their application in polyurethane. Prog Org Coat 164:106700. https://doi.org/10.1016/j.porgcoat.2021.106700

    Article  CAS  Google Scholar 

  34. Scandola M, Focarete ML, Adamus G, Sikorska W, Baranowska I, Swierczek S, Gnatowski M, Kowalczuk M, Jedlinski Z (1997) Polymer blends of natural poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and a synthetic atactic poly(3-hydroxybutyrate). Characterization and biodegradation studies. Macromolecules 30:2568–2574. https://doi.org/10.1021/ma961431y

    Article  CAS  Google Scholar 

  35. Panaitescu DM, Popa MS, Raditoiu V, Frone AN, Sacarescu L, Gabor AR, Nicolae CA, Teodorescu M (2021) Effect of calcium stearate as a lubricant and catalyst on the thermal degradation of poly(3-hydroxybutyrate). Int J Biol Macromol 190:780–791. https://doi.org/10.1016/j.ijbiomac.2021.09.030

    Article  CAS  PubMed  Google Scholar 

  36. Panaitescu DM, Nicolae CA, Frone AN, Chiulan I, Stanescu PO, Draghici C, Iorga M, Mihailescu M (2017) Plasticized poly(3-hydroxybutyrate) with improved melt processing and balanced properties. J Appl Polym Sci 134:44810. https://doi.org/10.1002/app.44810

    Article  CAS  Google Scholar 

  37. Vishnu Chandar J, Shanmugan S, Mutharasu D, Azlan AA (2017) Poly (3-hydroxybutyrate-co-15mol% 3-hydroxyhexanoate)/ZnO nanocomposites by solvent casting method: a study of optical, surface, and thermal properties. Mater Res Express 4:015301. https://doi.org/10.1088/2053-1591/4/1/015301

    Article  CAS  Google Scholar 

  38. Garrido-Miranda KA, Rivas BL, Pérez -Rivera MA, Sanfuentes EA, Peña-Farfal C (2018) Antioxidant and antifungal effects of eugenol incorporated in bionanocomposites of poly(3-hydroxybutyrate)-thermoplastic starch. LWT Food Sci Technol 98:260–267. https://doi.org/10.1016/j.lwt.2018.08.046

    Article  CAS  Google Scholar 

  39. Hilliou L, Teixeira PF, Machado D, Covas JA, Oliveira CSS, Duque AF, Reis MAM (2016) Effects of fermentation residues on the melt processability and thermomechanical degradation of PHBV produced from cheese whey using mixed microbial cultures. Polym Degrad Stab 128:269–277. https://doi.org/10.1016/j.polymdegradstab.2016.03.031

    Article  CAS  Google Scholar 

  40. Tudorachi N, Chiriac AP (2011) TGA/FTIR/MS study on thermal decomposition of poly(succinimide) and sodium poly(aspartate). Polym Test 30:397–407. https://doi.org/10.1016/j.polymertesting.2011.02.007

    Article  CAS  Google Scholar 

  41. Gunaratne LMWK, Shanks RA (2005) Multiple melting behaviour of poly(3-hydroxybutyrate-co-hydroxyvalerate) using step-scan DSC. Eur Polym J 41:2980–2988. https://doi.org/10.1016/j.eurpolymj.2005.06.015

    Article  CAS  Google Scholar 

  42. Bossu J, Le Moigne N, Dieudonné-George P, Dumazert L, Guillard V, Angellier-Coussy H (2021) Impact of the processing temperature on the crystallization behavior and mechanical properties of poly[R-3-hydroxybutyrate-co-(R-3-hydroxyvalerate)]. Polymer 229:123987. https://doi.org/10.1016/j.polymer.2021.123987

    Article  CAS  Google Scholar 

  43. Lovera D, Márquez L, Balsamo V, Taddei A, Castelli C, Müller AJ (2007) Crystallization, morphology, and enzymatic degradation of polyhydroxybutyrate/polycaprolactone (PHB/PCL) blends. Macromol Chem Phys 208(9):924–937. https://doi.org/10.1002/macp.200700011

    Article  CAS  Google Scholar 

  44. Li X, Liu KL, Wang M, Wong SY, Tjiu WC, He CB, Goh SH, Li J (2009) Improving hydrophilicity, mechanical properties and biocompatibility of poly[(R)-3-hydroxybutyrate-co®3-hydroxyvalerate] through blending with poly[(R)-3-hydroxybutyrate]-alt-poly(ethylene oxide). Acta Biomater 5(6):2002–2012. https://doi.org/10.1016/j.actbio.2009.01.035

    Article  CAS  PubMed  Google Scholar 

  45. Lim JS, Noda I, Im SS (2008) Effects of metal ion-carbonyl interaction on miscibility and crystallization kinetic of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/lightly ionized PBS. Eur Polym J 44:1428–1440. https://doi.org/10.1016/j.eurpolymj.2008.02.023

    Article  CAS  Google Scholar 

  46. Panaitescu DM, Frone AN, Chiulan I, Nicolae CA, Trusca R, Ghiurea M, Mihailescu A, Casarica A, Lupescu I (2018) Role of bacterial cellulose and poly (3-hydroxyhexanoate-co-3-hydroxyoctanoate) in poly (3-hydroxybutyrate) blends and composites. Cellulose 25(10):5569–5591. https://doi.org/10.1007/s10570-018-1980-3

    Article  CAS  Google Scholar 

  47. Liu GC, He YS, Zeng JB, Xu Y, Wang YZ (2014) In situ formed crosslinked polyurethane toughened polylactide. Polym Chem 5:2530–2539. https://doi.org/10.1039/C3PY01649H

    Article  CAS  Google Scholar 

  48. Bucknall CB, Paul DR (2009) Notched impact behavior of polymer blends: part 1: new model for particle size dependence. Polymer 50(23):5539–5548. https://doi.org/10.1016/j.polymer.2009.09.059

    Article  CAS  Google Scholar 

  49. Wang J, Zhang X, Jiang L, Qiao J (2019) Advances in toughened polymer materials by structured rubber particles. Prog Polym Sci 98:101160. https://doi.org/10.1016/j.progpolymsci.2019.101160

    Article  CAS  Google Scholar 

  50. Bai H, Huang C, Xiu H, Gao Y, Zhang Q, Fu Q (2013) Toughening of poly(l-lactide) with poly(ε-caprolactone): combined effects of matrix crystallization and impact modifier particle size. Polymer 54(19):5257–5266. https://doi.org/10.1016/j.polymer.2013.07.051

    Article  CAS  Google Scholar 

  51. Liu H, Song W, Chen F, Guo L, Zhang J (2011) Interaction of microstructure and interfacial adhesion on impact performance of polylactide (PLA) ternary blends. Macromolecules 44(6):1513–1522. https://doi.org/10.1021/ma1026934

    Article  CAS  Google Scholar 

  52. Ten E, Turtle J, Bahr D, Jiang L, Wolcott M (2010) Thermal and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites. Polymer 51(12):2652–2660. https://doi.org/10.1016/j.polymer.2010.04.007

    Article  CAS  Google Scholar 

  53. Abdo D, Gleadall A, Silberschmidt VV (2019) Damage and damping of short-glass-fibre-reinforced PBT composites under dynamic conditions: effect of matrix behavior. Compos Struct 226:111286. https://doi.org/10.1016/j.compstruct.2019.111286

    Article  Google Scholar 

  54. Zhang J, Hirschberg V, Rodrigue D (2022) Mechanical fatigue of biodegradable polymers: a study on polylactic acid (PLA), polybutylene succinate (PBS) and polybutylene adipate terephthalate (PBAT). Int J Fatigue 159:106798. https://doi.org/10.1016/j.ijfatigue.2022.106798

    Article  CAS  Google Scholar 

  55. Zhong N, Post W (2015) Self-repair of structural and functional composites with intrinsically self-healing polymer matrices: a review. Compos Part A Appl Sci 69:226–239. https://doi.org/10.1016/j.compositesa.2014.11.028

    Article  CAS  Google Scholar 

  56. Akhtar SS (2021) An integrated approach to design and develop high-performance polymer-composite thermal interface material. Polymers 13(5):807. https://doi.org/10.3390/polym13050807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ferreira WH, Silva CA, Andrade CT (2020) Improved compatibilization and shape memory properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(ethylene-co-vinyl acetate) blends by incorporation of modified reduced graphene oxide. Polymer 201:122625. https://doi.org/10.1016/j.polymer.2020.122625

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by a grant of the Ministry of Research, Innovation and Digitization—UEFISCDI, project number PN-III-P2-2.1-PED-2021-2559 (BIOPLASM) contract 632PED/2022 within PNCDI III.

Author information

Authors and Affiliations

Authors

Contributions

DMP and VM contributed to the study conception and design. Material preparation, data collection and analysis were performed by ANF, CAN, ARG and LC. The first draft of the manuscript was written by DMP and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Denis Mihaela Panaitescu or Violeta Melinte.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 557 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panaitescu, D.M., Melinte, V., Frone, A.N. et al. Influence of Biobased Polyurethane Structure on Thermal and Mechanical Properties of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)− Polyurethane Blends. J Polym Environ 31, 1584–1597 (2023). https://doi.org/10.1007/s10924-022-02710-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02710-z

Keywords

Navigation