Skip to main content

Advertisement

Log in

Ionic Liquids to Process Silk Fibroin and Wool Keratin for Bio-sustainable and Biomedical Applications

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The use of ionic liquids (ILs) is emerging as innovative strategy for the design of bio-based materials, allowing the creation of more effective, safer and environmentally benign products. They can be preferred to conventional organic solvents because offer the opportunity to drastically reduce undesired by-products. This makes their use suitable to process high value-added proteins from animal source—i.e., wool keratin (WK) and silk fibroin (SF)—toward a more conscious use of renewable and sustainable materials for a variety of green inspired applications. Herein, it is proposed an extended overview of currently used technological approaches to manipulate protein-based materials in different forms (i.e., polymer blends, bio-composites, electro-responsive materials, fibers, or nanoparticles) by using ILs for different bio-sustainable and biomedical applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Copyright 2019 American Chemical Society

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Copyright 2017 American Chemical Society

Fig. 8

Copyright 2021 Elsevier

Fig. 9

Copyright 2015 Elsevier

Similar content being viewed by others

References

  1. Shamshina JL, Berton P, Rogers RD (2019) Advances in functional chitin materials: a review. ACS Sustain Chem Eng 7:6444–6457. https://doi.org/10.1021/acssuschemeng.8b06372

    Article  CAS  Google Scholar 

  2. Rybacki K, Love SA, Blessing B et al (2022) Structural and morphological properties of wool keratin and cellulose biocomposites fabricated using ionic liquids. ACS Mater Au 2:21–32. https://doi.org/10.1021/acsmaterialsau.1c00016

    Article  CAS  Google Scholar 

  3. Yang J, Lu X, Yao X et al (2019) Inhibiting degradation of cellulose dissolved in ionic liquids via amino acids. Green Chem. https://doi.org/10.1039/c9gc00334g

    Article  Google Scholar 

  4. Salama A, Shukry N, El-Sakhawy M (2015) Carboxymethyl cellulose-g-poly(2-(dimethylamino) ethyl methacrylate) hydrogel as adsorbent for dye removal. Int J Biol Macromol 73:72–75. https://doi.org/10.1016/j.ijbiomac.2014.11.002

    Article  PubMed  CAS  Google Scholar 

  5. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974–4975. https://doi.org/10.1021/ja025790m

    Article  PubMed  CAS  Google Scholar 

  6. Shamshina JL (2019) Chitin in ionic liquids: historical insights into the polymer’s dissolution and isolation. A review. Green Chem 21:3974–3993. https://doi.org/10.1039/c9gc01830a

    Article  CAS  Google Scholar 

  7. Tran CD, Prosencyes F, Franko M, Benzi G (2016) Synthesis, structure and antimicrobial property of green composites from cellulose, wool, hair and chicken feather. Carbohydr Polym 151:1269–1276. https://doi.org/10.1016/j.carbpol.2016.06.021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Pereira RFP, Zehbe K, Günter C et al (2018) Ionic liquid-assisted synthesis of mesoporous silk fibroin/silica hybrids for biomedical applications. ACS Omega 3:10811–10822. https://doi.org/10.1021/acsomega.8b02051

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Hammond OS, Mudring A-V (2022) Ionic liquids and deep eutectics as a transformative platform for the synthesis of nanomaterials. Chem Commun. https://doi.org/10.1039/D1CC06543B

    Article  Google Scholar 

  10. Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150. https://doi.org/10.1039/B006677J

    Article  PubMed  CAS  Google Scholar 

  11. Li Y, Liu X, Zhang Y et al (2017) Why only ionic liquids with unsaturated heterocyclic cations can dissolve cellulose: a simulation study. ACS Sustain Chem Eng 5:3417–3428. https://doi.org/10.1021/acssuschemeng.7b00073

    Article  CAS  Google Scholar 

  12. Silva SS, Santos TC, Cerqueira MT et al (2012) The use of ionic liquids in the processing of chitosan/silk hydrogels for biomedical applications. Green Chem 14:1463–1470. https://doi.org/10.1039/c2gc16535j

    Article  CAS  Google Scholar 

  13. Salama A, Hasanin M, Hesemann P (2020) Synthesis and antimicrobial properties of new chitosan derivatives containing guanidinium groups. Carbohydr Polym 241:116363. https://doi.org/10.1016/j.carbpol.2020.116363

    Article  PubMed  CAS  Google Scholar 

  14. Salama A (2020) Cellulose/silk fibroin assisted calcium phosphate growth: novel biocomposite for dye adsorption. Int J Biol Macromol 165:1970–1977. https://doi.org/10.1016/j.ijbiomac.2020.10.074

    Article  PubMed  CAS  Google Scholar 

  15. Xie H, Li S, Zhang S (2005) Ionic liquids as novel solvents for the dissolution and blending of wool keratin fibers. Green Chem 7:606. https://doi.org/10.1039/b502547h

    Article  CAS  Google Scholar 

  16. Salama A, Hesemann P (2020) Recent trends in elaboration, processing, and derivatization of cellulosic materials using ionic liquids. ACS Sustain Chem Eng 8:17893–17907. https://doi.org/10.1021/acssuschemeng.0c06913

    Article  CAS  Google Scholar 

  17. Li Y, Wang J, Liu X, Zhang S (2018) Towards a molecular understanding of cellulose dissolution in ionic liquids: anion/cation effect, synergistic mechanism and physicochemical aspects. Chem Sci 9:4027–4043. https://doi.org/10.1039/c7sc05392d

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Zhuang L, Zhong F, Qin M et al (2020) Theoretical and experimental studies of ionic liquid-urea mixtures on chitosan dissolution: effect of cationic structure. J Mol Liq 317:113918. https://doi.org/10.1016/j.molliq.2020.113918

    Article  CAS  Google Scholar 

  19. Salama A, Mohamed F, Hesemann P (2021) Preparation and dielectric relaxation of a novel ionocellulose derivative. Carbohydr Polym Technol Appl 2:100087. https://doi.org/10.1016/j.carpta.2021.100087

    Article  CAS  Google Scholar 

  20. Baker SN, McCleskey TM, Pandey S, Baker GA (2004) Fluorescence studies of protein thermostability in ionic liquids. Electronic supplementary information (ESI) available: synthesis of [C4mpy][Tf2N]. Chem Commun. https://doi.org/10.1039/b401304m

    Article  Google Scholar 

  21. Erbeldinger M, Mesiano AJ, Russell AJ (2000) Enzymatic catalysis of formation of Z-aspartame in ionic liquid—an alternative to enzymatic catalysis in organic solvents. Biotechnol Prog 16:1129–1131. https://doi.org/10.1021/bp000094g

    Article  PubMed  CAS  Google Scholar 

  22. Pernak J, Sobaszkiewicz K, Mirska I (2003) Anti-microbial activities of ionic liquids. Green Chem 5:52–56. https://doi.org/10.1039/b207543c

    Article  CAS  Google Scholar 

  23. Tseng M-C, Liang Y-M, Chu Y-H (2005) Synthesis of fused tetrahydro-β-carbolinequinoxalinones in 1-n-butyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide ([bdmim][Tf2N]) and 1-n-butyl-2,3-dimethylimidazolium perfluorobutylsulfonate ([bdmim][PFBuSO3]) ionic liquids. Tetrahedron Lett 46:6131–6136. https://doi.org/10.1016/j.tetlet.2005.06.153

    Article  CAS  Google Scholar 

  24. Jaitely V, Karatas A, Florence AT (2008) Water-immiscible room temperature ionic liquids (RTILs) as drug reservoirs for controlled release. Int J Pharm 354:168–173. https://doi.org/10.1016/j.ijpharm.2008.01.034

    Article  PubMed  CAS  Google Scholar 

  25. Freddi G, Mossotti R, Innocenti R (2003) Degumming of silk fabric with several proteases. J Biotechnol 106:101–112. https://doi.org/10.1016/j.jbiotec.2003.09.006

    Article  PubMed  CAS  Google Scholar 

  26. El Seoud OA, Kostag M, Possidonio S et al (2021) Dissolution of silk fibroin in mixtures of ionic liquids and dimethyl sulfoxide: on the relative importance of temperature and binary solvent composition. Polymers (Basel) 14:13. https://doi.org/10.3390/polym14010013

    Article  CAS  Google Scholar 

  27. Ho M, Wang H, Lau K et al (2012) Interfacial bonding and degumming effects on silk fibre/polymer biocomposites. Compos Part B 43:2801–2812. https://doi.org/10.1016/j.compositesb.2012.04.042

    Article  CAS  Google Scholar 

  28. Inoue S, Tanaka K, Arisaka F et al (2000) Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. J Biol Chem 275:40517–40528. https://doi.org/10.1074/jbc.M006897200

    Article  PubMed  CAS  Google Scholar 

  29. Nguyen TP, Nguyen QV, Nguyen V-H et al (2019) Silk fibroin-based biomaterials for biomedical applications: a review. Polymers (Basel) 11:1933. https://doi.org/10.3390/polym11121933

    Article  CAS  Google Scholar 

  30. Asakura T, Ohgo K, Ishida T et al (2005) Possible implications of serine and tyrosine residues and intermolecular interactions on the appearance of silk I structure of Bombyx mori silk fibroin-derived synthetic spinning NMR study. Biomacromol 6:468–474

    Article  CAS  Google Scholar 

  31. Borkner CB, Elsner MB, Scheibel T (2014) Coatings and films made of silk proteins. ACS Appl Mater Interfaces 6:15611–15625. https://doi.org/10.1021/am5008479

    Article  PubMed  CAS  Google Scholar 

  32. Pereira RFP, Brito-Pereira R, Gonçalves R et al (2018) Silk fibroin separators: a step toward lithium-ion batteries with enhanced sustainability. ACS Appl Mater Interfaces 10:5385–5394. https://doi.org/10.1021/acsami.7b13802

    Article  PubMed  CAS  Google Scholar 

  33. Reizabal A, Correia DM, Costa CM et al (2019) Silk fibroin bending actuators as an approach toward natural polymer based active materials. ACS Appl Mater Interfaces 11:30197–30206. https://doi.org/10.1021/acsami.9b07533

    Article  PubMed  CAS  Google Scholar 

  34. El Seoud OA, Kostag M, Possidonio S et al (2022) Dissolution of silk fibroin in mixtures of ionic liquids and dimethyl sulfoxide: on the relative importance of temperature and binary solvent composition. Polymers 14(1):13

    Article  Google Scholar 

  35. Phillips DM, Drummy LF, Conrady DG et al (2004) Dissolution and regeneration of Bombyx mori silk fibroin using ionic liquids. J Am Chem Soc 126:14350–14351. https://doi.org/10.1021/ja046079f

    Article  PubMed  CAS  Google Scholar 

  36. Moreira IP, Esteves C, Palma SICJ et al (2022) Synergy between silk fibroin and ionic liquids for active gas-sensing materials. Mater Today Bio 15:100290. https://doi.org/10.1016/j.mtbio.2022.100290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Aramwit P, Kanokpanont S, Nakpheng T, Srichana T (2010) The effect of sericin from various extraction methods on cell viability and collagen production. Int J Mol Sci 11:2200–2211. https://doi.org/10.3390/ijms11052200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728. https://doi.org/10.1021/cr9001947

    Article  PubMed  CAS  Google Scholar 

  39. Gupta MK, Khokhar SK, Phillips DM et al (2007) Patterned silk films cast from ionic liquid solubilized fibroin as scaffolds for cell growth. Langmuir 23:1315–1319. https://doi.org/10.1021/la062047p

    Article  PubMed  CAS  Google Scholar 

  40. Kundu B, Kundu SC (2012) Silk sericin/polyacrylamide in situ forming hydrogels for dermal reconstruction. Biomaterials 33:7456–7467. https://doi.org/10.1016/j.biomaterials.2012.06.091

    Article  PubMed  CAS  Google Scholar 

  41. Shavandi A, Silva TH, Bekhit AA, Bekhit AE-DA (2017) Keratin: dissolution, extraction and biomedical application. Biomater Sci 5:1699–1735. https://doi.org/10.1039/C7BM00411G

    Article  PubMed  CAS  Google Scholar 

  42. Karthikeyan R, Balaji S, Sehgal PK (2007) Industrial applications of keratins: a review. J Sci Ind Res 66:705–715

    Google Scholar 

  43. Ma Y, Rosson L, Wang X, Byrne N (2020) Upcycling of waste textiles into regenerated cellulose fibres: impact of pretreatments. J Text Inst 111:630–638. https://doi.org/10.1080/00405000.2019.1656355

    Article  CAS  Google Scholar 

  44. Shavandi A, Bekhit AE-DA, Carne A, Bekhit A (2017) Evaluation of keratin extraction from wool by chemical methods for bio-polymer application. J Bioact Compat Polym 32:163–177. https://doi.org/10.1177/0883911516662069

    Article  CAS  Google Scholar 

  45. Zhang Z, Nie Y, Zhang Q et al (2017) Quantitative change in disulfide bonds and microstructure variation of regenerated wool keratin from various ionic liquids. ACS Sustain Chem Eng 5:2614–2622. https://doi.org/10.1021/acssuschemeng.6b02963

    Article  CAS  Google Scholar 

  46. Ghosh A, Clerens S, Deb-Choudhury S, Dyer JM (2014) Thermal effects of ionic liquid dissolution on the structures and properties of regenerated wool keratin. Polym Degrad Stab 108:108–115. https://doi.org/10.1016/j.polymdegradstab.2014.06.007

    Article  CAS  Google Scholar 

  47. Zheng S, Nie Y, Zhang S et al (2015) Highly efficient dissolution of wool keratin by dimethylphosphate ionic liquids. ACS Sustain Chem Eng 3:2925–2932. https://doi.org/10.1021/acssuschemeng.5b00895

    Article  CAS  Google Scholar 

  48. Li Y, Fang F, Sun M et al (2020) Ionic liquid-assisted protein extraction method for plant phosphoproteome analysis. Talanta 213:120848. https://doi.org/10.1016/j.talanta.2020.120848

    Article  PubMed  CAS  Google Scholar 

  49. Liu X, Nie Y, Liu Y et al (2018) Screening of ionic liquids for keratin dissolution by means of COSMO-RS and experimental verification. ACS Sustain Chem Eng 6:17314–17322. https://doi.org/10.1021/acssuschemeng.8b04830

    Article  CAS  Google Scholar 

  50. Berton P, Shen X, Rogers RD, Shamshina JL (2019) 110th anniversary: high-molecular-weight chitin and cellulose hydrogels from biomass in ionic liquids without chemical crosslinking. Ind Eng Chem Res 58:19862–19876. https://doi.org/10.1021/acs.iecr.9b03078

    Article  CAS  Google Scholar 

  51. Feroz S, Muhammad N, Dias G, Alsaiari MA (2022) Extraction of keratin from sheep wool fibres using aqueous ionic liquids assisted probe sonication technology. J Mol Liq 350:118595. https://doi.org/10.1016/j.molliq.2022.118595

    Article  CAS  Google Scholar 

  52. Plowman JE, Clerens S, Lee E et al (2014) Ionic liquid-assisted extraction of wool keratin proteins as an aid to MS identification. Anal Methods 6:7305–7311. https://doi.org/10.1039/C4AY01251H

    Article  CAS  Google Scholar 

  53. Goujon N, Wang X, Rajkowa R, Byrne N (2012) Regenerated silk fibroin using protic ionic liquids solvents: towards an all-ionic-liquid process for producing silk with tunable properties. Chem Commun 48:1278–1280. https://doi.org/10.1039/c2cc17143k

    Article  CAS  Google Scholar 

  54. Yao M, Su D, Wang W et al (2018) Fabrication of air-stable and conductive silk fibroin gels. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.8b14521

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hadadi A, Whittaker JW, Verrill DE et al (2018) A hierarchical model to understand the processing of polysaccharides/protein-based films in ionic liquids. Biomacromol 19:3970–3982. https://doi.org/10.1021/acs.biomac.8b00903

    Article  CAS  Google Scholar 

  56. Salama A, El-Sakhawy M (2016) Regenerated cellulose/wool blend enhanced biomimetic hydroxyapatite mineralization. Int J Biol Macromol 92:920–925. https://doi.org/10.1016/j.ijbiomac.2016.07.077

    Article  PubMed  CAS  Google Scholar 

  57. Hameed N, Guo Q (2009) Natural wool/cellulose acetate blends regenerated from the ionic liquid 1-butyl-3-methylimidazolium chloride. Carbohydr Polym 78:999–1004. https://doi.org/10.1016/j.carbpol.2009.07.033

    Article  CAS  Google Scholar 

  58. Rivera-Galletti A, Gough CR, Kaleem F et al (2021) Silk-cellulose acetate biocomposite materials regenerated from ionic liquid. Polymers (Basel) 13:2911. https://doi.org/10.3390/polym13172911

    Article  PubMed Central  CAS  Google Scholar 

  59. Jia X, Wang C, Ranganathan V et al (2017) A biodegradable thin-film magnesium primary battery using silk fibroin-ionic liquid polymer electrolyte. ACS Energy Lett 2:831–836. https://doi.org/10.1021/acsenergylett.7b00012

    Article  CAS  Google Scholar 

  60. Liu X, Xu W, Zhang C et al (2015) Homogeneous sulfation of silk fibroin in an ionic liquid. Mater Lett 143:302–304. https://doi.org/10.1016/j.matlet.2014.12.140

    Article  CAS  Google Scholar 

  61. Lozano-Pérez AA, Montalbán MG, Aznar-Cervantes SD et al (2014) Production of silk fibroin nanoparticles using ionic liquids and high-power ultrasounds. J Appl Polym Sci. https://doi.org/10.1002/app.41702

    Article  Google Scholar 

  62. Wang Y, Kim BJ, Peng B et al (2019) Controlling silk fibroin conformation for dynamic, responsive, multifunctional, micropatterned surfaces. Proc Natl Acad Sci USA 116:21361–21368. https://doi.org/10.1073/pnas.1911563116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Jin H-J, Park J, Karageorgiou V et al (2005) Water-stable silk films with reduced β-sheet content. Adv Funct Mater 15:1241–1247. https://doi.org/10.1002/adfm.200400405

    Article  CAS  Google Scholar 

  64. Salama A, Hesemann P (2018) New N-guanidinium chitosan/silica ionic microhybrids as efficient adsorbent for dye removal from waste water. Int J Biol Macromol 111:762–768. https://doi.org/10.1016/j.ijbiomac.2018.01.049

    Article  PubMed  CAS  Google Scholar 

  65. Salama A, Hesemann P (2018) Synthesis of N-guanidinium-chitosan/silica hybrid composites: efficient adsorbents for anionic pollutants. J Polym Environ 26:1986–1997. https://doi.org/10.1007/s10924-017-1093-3

    Article  CAS  Google Scholar 

  66. Salama A (2019) Cellulose/calcium phosphate hybrids: new materials for biomedical and environmental applications. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.01.130

    Article  PubMed  Google Scholar 

  67. Salama A (2016) Polysaccharides/silica hybrid materials: new perspectives for sustainable raw materials. J Carbohydr Chem 35:131–149. https://doi.org/10.1080/07328303.2016.1154152

    Article  CAS  Google Scholar 

  68. Salama A (2019) Soy protein acid hydrolysate/silica hybrid material as novel adsorbent for methylene blue. Compos Commun. https://doi.org/10.1016/j.coco.2019.01.002

    Article  Google Scholar 

  69. Salama A, Abou-Zeid RE, El-Sakhawy M, El-Gendy A (2015) Carboxymethyl cellulose/silica hybrids as templates for calcium phosphate biomimetic mineralization. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2014.11.041

    Article  PubMed  Google Scholar 

  70. Zhou Y, Schattka J (2004) Room-temperature ionic liquids as template to monolithic mesoporous silica with wormlike pores via a sol–gel nanocasting technique. Nano Lett 4:477–481

    Article  CAS  Google Scholar 

  71. Kaper H, Endres F, Djerdj I et al (2007) Direct low-temperature synthesis of rutile nanostructures in ionic liquids. Small 3:1753–1763. https://doi.org/10.1002/smll.200700138

    Article  PubMed  CAS  Google Scholar 

  72. Taubert A (2004) CuCl nanoplatelets from an ionic liquid-crystal precursor. Angew Chemie 116:5494–5496. https://doi.org/10.1002/ange.200460846

    Article  Google Scholar 

  73. Parnham ER, Morris RE (2007) Ionothermal synthesis of zeolites, metal–organic frameworks, and inorganic-organic hybrids. Acc Chem Res 40:1005–1013. https://doi.org/10.1021/ar700025k

    Article  PubMed  CAS  Google Scholar 

  74. Taubert A, Li Z (2007) Inorganic materials from ionic liquids. Dalton Trans. https://doi.org/10.1039/b616593a

    Article  PubMed  Google Scholar 

  75. Salama A, Neumann M, Günter C, Taubert A (2014) Ionic liquid-assisted formation of cellulose/calcium phosphate hybrid materials. Beilstein J Nanotechnol 5:1553–1568. https://doi.org/10.3762/bjnano.5.167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Van Vlierberghe S, Dubruel P, Schacht E (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromol 12:1387–1408. https://doi.org/10.1021/bm200083n

    Article  CAS  Google Scholar 

  77. Shu X, Zhu K (2002) Controlled drug release properties of ionically cross-linked chitosan beads: the influence of anion structure. Int J Pharm 233:217–225. https://doi.org/10.1016/S0378-5173(01)00943-7

    Article  PubMed  CAS  Google Scholar 

  78. Salama A (2018) Chitosan based hydrogel assisted spongelike calcium phosphate mineralization for in-vitro BSA release. Int J Biol Macromol 108:471–476. https://doi.org/10.1016/j.ijbiomac.2017.12.035

    Article  PubMed  CAS  Google Scholar 

  79. Salama A, El-Sakhawy M (2014) Preparation of polyelectrolyte/calcium phosphate hybrids for drug delivery application. Carbohydr Polym 113:500–506. https://doi.org/10.1016/j.carbpol.2014.07.022

    Article  PubMed  CAS  Google Scholar 

  80. Hassan H, Salama A, El-ziaty AK, El-sakhawy M (2019) New chitosan/silica/zinc oxide nanocomposite as adsorbent for dye removal. Int J Biol Macromol 131:520–526. https://doi.org/10.1016/j.ijbiomac.2019.03.087

    Article  PubMed  CAS  Google Scholar 

  81. Salama A, Hesemann P (2020) Synthesis and characterization of N-guanidinium chitosan/silica ionic hybrids as templates for calcium phosphate mineralization. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2020.01.046

    Article  PubMed  Google Scholar 

  82. Salama A (2017) New sustainable hybrid material as adsorbent for dye removal from aqueous solutions. J Colloid Interface Sci 487:348–353. https://doi.org/10.1016/j.jcis.2016.10.034

    Article  PubMed  CAS  Google Scholar 

  83. Salama A, Shukry N, El-gendy A, El-sakhawy M (2017) Bioactive cellulose grafted soy protein isolate towards biomimetic calcium phosphate mineralization. Ind Crop Prod 95:170–174. https://doi.org/10.1016/j.indcrop.2016.10.019

    Article  CAS  Google Scholar 

  84. Salama A, Abou-Zeid RE, Cruz-Maya I, Guarino V (2021) Mineralized nanocomposite scaffolds based on soy protein grafted oxidized cellulose for biomedical applications. Mater Today Proc 34:16–20. https://doi.org/10.1016/j.matpr.2019.12.069

    Article  CAS  Google Scholar 

  85. Sangoro JR, Mierzwa M, Iacob C et al (2012) Brownian dynamics determine universality of charge transport in ionic liquids. RSC Adv 2:5047. https://doi.org/10.1039/c2ra20560b

    Article  CAS  Google Scholar 

  86. Yuan W-L, Yang X, He L et al (2018) Viscosity, conductivity, and electrochemical property of dicyanamide ionic liquids. Front Chem 6:1–12. https://doi.org/10.3389/fchem.2018.00059

    Article  CAS  Google Scholar 

  87. Shirota H, Castner EW (2005) Physical properties and intermolecular dynamics of an ionic liquid compared with its isoelectronic neutral binary solution. J Phys Chem A 109:9388–9392. https://doi.org/10.1021/jp054664c

    Article  PubMed  CAS  Google Scholar 

  88. Xu Q, Kong Q, Liu Z et al (2014) Cellulose/polysulfonamide composite membrane as a high performance lithium-ion battery separator. ACS Sustain Chem Eng 2:194–199. https://doi.org/10.1021/sc400370h

    Article  CAS  Google Scholar 

  89. Cheng X, Pan J, Zhao Y et al (2018) Gel polymer electrolytes for electrochemical energy storage. Adv Energy Mater 8:1702184. https://doi.org/10.1002/aenm.201702184

    Article  CAS  Google Scholar 

  90. Tao H, Kaplan DL, Omenetto FG (2012) Silk materials—a road to sustainable high technology. Adv Mater 24:2824–2837. https://doi.org/10.1002/adma.201104477

    Article  PubMed  CAS  Google Scholar 

  91. Li P, Chen J, Tang S (2021) Ionic liquid-impregnated covalent organic framework/silk nanofibril composite membrane for efficient proton conduction. Chem Eng J 415:129021. https://doi.org/10.1016/j.cej.2021.129021

    Article  CAS  Google Scholar 

  92. Irie M, Fukaminato T, Matsuda K, Kobatake S (2014) Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem Rev 114:12174–12277. https://doi.org/10.1021/cr500249p

    Article  PubMed  CAS  Google Scholar 

  93. Koga H, Nogi M, Isogai A (2017) Ionic liquid mediated dispersion and support of functional molecules on cellulose fibers for stimuli-responsive chromic paper devices. ACS Appl Mater Interfaces 9:40914–40920. https://doi.org/10.1021/acsami.7b14827

    Article  PubMed  CAS  Google Scholar 

  94. Yang YJ, Ganbat D, Aramwit P et al (2019) Processing keratin from camel hair and cashmere with ionic liquids. Express Polym Lett 13:97–108. https://doi.org/10.3144/expresspolymlett.2019.10

    Article  CAS  Google Scholar 

  95. Hu Y, Liu L, Dan W et al (2013) Evaluation of 1-ethyl-3-methylimidazolium acetate based ionic liquid systems as a suitable solvent for collagen. J Appl Polym Sci 130:2245–2256. https://doi.org/10.1002/app.39298

    Article  CAS  Google Scholar 

  96. Gonçalves C, Silva SS, Gomes JM et al (2020) Ionic liquid-mediated processing of SAIB-chitin scaffolds. ACS Sustain Chem Eng 8:3986–3994. https://doi.org/10.1021/acssuschemeng.0c00385

    Article  CAS  Google Scholar 

  97. Cruz-Maya I, Guarino V, Almaguer-Flores A et al (2019) Highly polydisperse keratin rich nanofibers: Scaffold design and in vitro characterization. J Biomed Mater Res Part A. https://doi.org/10.1002/jbm.a.36699

    Article  Google Scholar 

  98. Vineis C, Cruz Maya I, Mowafi S et al (2021) Synergistic effect of sericin and keratin in gelatin based nanofibers for in vitro applications. Int J Biol Macromol 190:375–381. https://doi.org/10.1016/j.ijbiomac.2021.09.007

    Article  PubMed  CAS  Google Scholar 

  99. Abdul Khodir W, Abdul Razak A, Ng M et al (2018) Encapsulation and characterization of gentamicin sulfate in the collagen added electrospun nanofibers for skin regeneration. J Funct Biomater 9:36. https://doi.org/10.3390/jfb9020036

    Article  PubMed Central  CAS  Google Scholar 

  100. Cirillo V, Guarino V, Ambrosio L (2012) Design of bioactive electrospun scaffolds for bone tissue engineering. J Appl Biomater Funct Mater 10:223–228. https://doi.org/10.5301/JABFM.2012.10343

    Article  PubMed  CAS  Google Scholar 

  101. Zavgorodnya O, Shamshina JL, Bonner JR, Rogers RD (2017) Electrospinning biopolymers from ionic liquids requires control of different solution properties than volatile organic solvents. ACS Sustain Chem Eng 5:5512–5519. https://doi.org/10.1021/acssuschemeng.7b00863

    Article  CAS  Google Scholar 

  102. Boas M, Gradys A, Vasilyev G et al (2015) Electrospinning polyelectrolyte complexes: pH-responsive fibers. Soft Matter 11:1739–1747. https://doi.org/10.1039/C4SM02618G

    Article  PubMed  CAS  Google Scholar 

  103. Salama A (2017) Dicarboxylic cellulose decorated with silver nanoparticles as sustainable antibacterial nanocomposite material. Environ Nanotechnol Monit Manag 8:228–232. https://doi.org/10.1016/j.enmm.2017.08.003

    Article  Google Scholar 

  104. Abou-Zeid RE, Salama A, Al-Ahmed ZA et al (2020) Carboxylated cellulose nanofibers as a novel efficient adsorbent for water purification. Cellul Chem Technol 54:237–245. https://doi.org/10.35812/CELLULOSECHEMTECHNOL.2020.54.25

    Article  CAS  Google Scholar 

  105. Abou-Zeid RE, Awwad NS, Nabil S et al (2019) Oxidized alginate/gelatin decorated silver nanoparticles as new nanocomposite for dye adsorption. Int J Biol Macromol 141:1280–1286. https://doi.org/10.1016/j.ijbiomac.2019.09.076

    Article  PubMed  CAS  Google Scholar 

  106. Vepari C, Kaplan DL (2007) Silk as a biomaterial. Prog Polym Sci 32:991–1007. https://doi.org/10.1016/j.progpolymsci.2007.05.013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

None.

Funding

National Research Council (CNR) of Italy and the Egyptian Academy of Scientific Research and Technology for their financial support through the Joint Bi-lateral Agreement (Biennial Programme 2022–2023).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, AS, VG; Draft preparation, AS, VG; Writing—review and editing, AS, VG. Funding, AS, VG. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Ahmed Salama or Vincenzo Guarino.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salama, A., Guarino, V. Ionic Liquids to Process Silk Fibroin and Wool Keratin for Bio-sustainable and Biomedical Applications. J Polym Environ 30, 4961–4977 (2022). https://doi.org/10.1007/s10924-022-02592-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02592-1

Keywords

Navigation