Skip to main content

Advertisement

Log in

Fabrication of a Novel Fibrous Mat Based on Gliadin/Ethylcellulose Incorporated with Triamcinolone for Treatment of Oral Ulcers

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Eelectrospun fibrous mats for oral ulcer dressing should be able to attach oral mucosa in a high moisture environment and provide desirable therapeutic effects. Ethylcellulose and Gliadin are appropriate polymers in this regard. In the current study, first, Triamcinolone was integrated into Gliadin/Ethylcellulose fibrous mats (Triamcinolone/Gliadin/Ethylcellulose). Then, the chemical structure, thermal stability, mechanical properties, and morphology of Triamcinolone/Gliadin/Ethylcellulose fibrous mats were evaluated by Fourier Transform Infrared Spectroscopy, thermal gravimetric analysis (TGA), Tensile stress analysis, and scanning electron microscopy, respectively. Moreover, the biocompatibility, anti-inflammatory, and antioxidative effects of these fibrous mats were evaluated on human gingival fibroblasts. The results of SEM confirmed the uniform structure of the fabricated fibrous mats. The mechanical strength and the thermal stability of fibrous mats containing Triamcinolone were improved compared with Gliadin/Ethylcellulose fibrous mats. In vitro analysis showed the non-cytotoxicity of these fibrous mats on HGFs. Moreover, expression levels of TNF α and IL 6 in fabricated mats were 0.995 pg/mL and 0.44 pg/mL, which were significantly less than the control group. Also, the measurement of ROS activity showed significant decreases in stimulated HGFs. According to these results, it seems that the Triamcinolone/Gliadin/Ethylcellulose would be a practical mat for application in the treatment of oral inflammatory ulcers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Halim DS, Pohchi A, Yi PE (2010) The prevalence of fibroma in oral mucosa among patient attending USM dental clinic year 2006–2010. Ind J Dental Res 1:61. https://doi.org/10.22146/theindjdentres.9991

  2. Epstein JB, Villines D, Drahos G, et al (2008) Oral lesions in patients participating in an oral examination screening week at an urban dental school. J Am Dental Assoc 139:1338–1344. https://doi.org/10.14219/jada.archive.2008.0045

  3. Vaillant L, Samimi M (2016) Aphtes et ulcérations buccales. Presse Medicale 45:215–226. https://doi.org/10.1016/j.lpm.2016.01.005

    Article  Google Scholar 

  4. Akintoye SO, Greenberg MS (2014) Recurrent aphthous stomatitis. Dent Clin North Am 58:281–297. https://doi.org/10.1016/j.cden.2013.12.002

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mortazavi H, Safi Y, Baharvand M, Rahmani S (2016) Diagnostic features of common oral ulcerative lesions: an updated decision tree. Int J Dentistry. https://doi.org/10.1155/2016/7278925

    Article  Google Scholar 

  6. Scully C, Mignogna M (2008) Oral mucosal disease: pemphigus. Brit J Oral Maxillofacial Surg 46:272–277. https://doi.org/10.1016/j.bjoms.2007.07.205

    Article  Google Scholar 

  7. Jacob S, Nair AB, Boddu SHS et al (2021) An updated overview of the emerging role of patch and film-based buccal delivery systems. Pharmaceutics. https://doi.org/10.3390/pharmaceutics13081206

    Article  PubMed  PubMed Central  Google Scholar 

  8. Armenta-rojas E, López-maldonado A (2021) Nystatin-loaded polyelectrolyte complex films as a mucoadhesive drug delivery system for potential buccal application. Biointerf Res Appl Chem 12:4384–4398. https://doi.org/10.33263/briac124.43844398

  9. Chowdary KPR, Srinivas L (2000) Mucoadhesive drug delivery systems: a review of current status. Indian Drugs 37:400–406

    CAS  Google Scholar 

  10. Chen YC, Gad SF, Chobisa D et al (2021) Local drug delivery systems for inflammatory diseases: status quo, challenges, and opportunities. J Control Release 330:438–460. https://doi.org/10.1016/j.jconrel.2020.12.025

    Article  CAS  PubMed  Google Scholar 

  11. Anand R, Kumar A (2021) Significant biopolymers and their applications in buccal mediated drug delivery. J Biomater Sci Poly Edition 32:1203–1218. https://doi.org/10.1080/09205063.2021.1902175

    Article  CAS  Google Scholar 

  12. Pourshahidi S, Sheykhbahaei N (2021) Effectiveness of herbal based medications in treatment of oral lichen planus: a review article. J Herbal Med 29:100458. https://doi.org/10.1016/j.hermed.2021.100458

    Article  Google Scholar 

  13. Thongprasom K, Dhanuthai K (2008) Steriods in the treatment of lichen planus: a review. Journal of oral science 50:377–385

    Article  CAS  Google Scholar 

  14. Mukhopadhyay R, Gain S, Verma S et al (2018) Polymers in designing the mucoadhesive films: a comprehensive review. Int J Green Pharm 12:S330–S344

    CAS  Google Scholar 

  15. Akrami-Hasan-Kohal M, Tayebi L, Ghorbani M (2020) Curcumin-loaded naturally-based nanofibers as active wound dressing mats: morphology, drug release, cell proliferation, and cell adhesion studies. New J Chem 44:10343–10351

    Article  CAS  Google Scholar 

  16. Laffleur F (2014) Mucoadhesive polymers for buccal drug delivery. Drug Dev Indust Pharm 40:591–598

    Article  CAS  Google Scholar 

  17. (2013) Design and development of mucoadhesive buccal tablets of. 4:1186–1196

  18. Sampath Udeni Gunathilake TM, Ching YC, Chuah CH et al (2020) Recent advances in celluloses and their hybrids for stimuli-responsive drug delivery. Int J Biol Macromol 158:670–688. https://doi.org/10.1016/j.ijbiomac.2020.05.010

    Article  CAS  PubMed  Google Scholar 

  19. Hajjari MM, Golmakani MT, Sharif N (2021) Fabrication and characterization of cuminaldehyde-loaded electrospun gliadin fiber mats. Lwt 145:111373. https://doi.org/10.1016/j.lwt.2021.111373

    Article  CAS  Google Scholar 

  20. Liu X, Shao W, Luo M et al (2018) Electrospun blank nanocoating for improved sustained release profiles from medicated gliadin nanofibers. Nanomaterials 8:184

    Article  Google Scholar 

  21. Cazorla-Luna R, Notario-Pérez F, Martín-Illana A et al (2020) Development and in vitro/ ex vivo characterization of vaginal mucoadhesive bilayer films based on ethylcellulose and biopolymers for vaginal sustained release of tenofovir. Biomacromolecules 21:2309–2319. https://doi.org/10.1021/acs.biomac.0c00249

    Article  CAS  PubMed  Google Scholar 

  22. Ahmadian S, Ghorbani M, Mahmoodzadeh F (2020) Silver sulfadiazine-loaded electrospun ethyl cellulose/polylactic acid/collagen nanofibrous mats with antibacterial properties for wound healing. Int J Biol Macromol 162:1555–1565

    Article  CAS  Google Scholar 

  23. Murtaza G (2012) Ethylcellulose microparticles: a review. Acta Pol Pharm 69:11–22

    CAS  PubMed  Google Scholar 

  24. Mansourian A, Saheb-Jamee M, Momen-Beitollahi J et al (2011) Comparison of aloe vera mouthwash with triamcinolone acetonide 0.1% on oral lichen planus: a randomized double-blinded clinical trial. Am J Med Sci 342:447–451

    Article  Google Scholar 

  25. Fani MM, Ebrahimi H, Pourshahidi S et al (2012) Comparing the effect of phenytoin syrup and triamcinolone acetonide ointment on aphthous ulcers in patients with Behcet’s syndrome. Iran Red Cresc Med J 14:75

    CAS  Google Scholar 

  26. Suen WLL, Chau Y (2013) Specific uptake of folate-decorated triamcinolone-encapsulating nanoparticles by retinal pigment epithelium cells enhances and prolongs antiangiogenic activity. J Control Release 167:21–28. https://doi.org/10.1016/j.jconrel.2013.01.004

    Article  CAS  PubMed  Google Scholar 

  27. Aquino GDA, Stopilha; Pedrosa;, et al (2011) Validation of quantitative analysis method for triamcinolone in ternary complexes by UV-Vis spectrophotometry. J Basic Appl Pharmaceutical Sci Rev Ciênc Farm Básica Apl 32:35–40

    CAS  Google Scholar 

  28. Sabzichi M, Mohammadian J, Ghorbani M et al (2017) Fabrication of all-trans-retinoic acid-loaded biocompatible precirol: A strategy for escaping dose-dependent side effects of doxorubicin. Colloids Surf B Biointerf 159:620–628

    Article  CAS  Google Scholar 

  29. Ghorbani M, Hamishehkar H, Hajipour H et al (2016) Ternary-responsive magnetic nanocarriers for targeted delivery of thiol-containing anticancer drugs. New J Chem 40:3561–3570. https://doi.org/10.1039/C5NJ03602J

    Article  CAS  Google Scholar 

  30. Maroufi NF, Vahedian V, Mazrakhondi SAM et al (2020) Sensitization of MDA-MBA231 breast cancer cell to docetaxel by myricetin loaded into biocompatible lipid nanoparticles via sub-G1 cell cycle arrest mechanism. Naunyn-Schmiedeberg’s Arch Pharmacol 393:1–11

    Article  CAS  Google Scholar 

  31. Ghorbani M, Hamishehkar H, Arsalani N, Entezami AA (2016) Surface decoration of magnetic nanoparticles with folate-conjugated poly(N-isopropylacrylamide-co-itaconic acid): a facial synthesis of dual-responsive nanocarrier for targeted delivery of doxorubicin. Int J Polym Mater Polym Biomater 65:683–694. https://doi.org/10.1080/00914037.2016.1157800

    Article  CAS  Google Scholar 

  32. Raeisi S, Chavoshi H, Mohammadi M et al (2019) Naringenin-loaded nano-structured lipid carrier fortifies oxaliplatin-dependent apoptosis in HT-29 cell line. Process Biochemistry 83:168–175. https://doi.org/10.1016/j.procbio.2019.05.013

    Article  CAS  Google Scholar 

  33. Cheng L, Wang Y, Sun G, et al (2020) Hydration-enhanced lubricating electrospun nanofibrous membranes prevent Tissue Adhesion Rese 2020:4907185. https://doi.org/10.34133/2020/4907185

  34. Ghorbani M, Nezhad-Mokhtari P, Ramazani S (2020) Aloe vera-loaded nanofibrous scaffold based on Zein/Polycaprolactone/Collagen for wound healing. Int J Biol Macromol 153:921–930

    Article  CAS  Google Scholar 

  35. Bodbodak S, Shahabi N, Mohammadi M, et al (2021) Development of a novel antimicrobial electrospun nanofiber based on polylactic acid/hydroxypropyl methylcellulose containing pomegranate peel extract for active food packaging. Food Bioprocess Technol 1–13

  36. Varghese JS, Chellappa N, Fathima NN (2014) Gelatin–carrageenan hydrogels: role of pore size distribution on drug delivery process. Colloids Surf B Biointerf 113:346–351

    Article  CAS  Google Scholar 

  37. Remuñán-López C, Portero A, Vila-Jato JL, Alonso MJ (1998) Design and evaluation of chitosan/ethylcellulose mucoadhesive bilayered devices for buccal drug delivery. J Control Release 55:143–152

    Article  Google Scholar 

  38. Akhavan-Kharazian N, Izadi-Vasafi H (2019) Preparation and characterization of chitosan/gelatin/nanocrystalline cellulose/calcium peroxide films for potential wound dressing applications. Int J Biol Macromol 133:881–891

    Article  CAS  Google Scholar 

  39. Bölgen N, Menceloğlu YZ, Acatay K et al (2005) In vitro and in vivo degradation of non-woven materials made of poly (ε-caprolactone) nanofibers prepared by electrospinning under different conditions. J Biomater Sci Polym Edition 16:1537–1555

    Article  Google Scholar 

  40. Ghorbani M, Nezhad-Mokhtari P, Ramazani S (2020) Aloe vera-loaded nanofibrous scaffold based on Zein/Polycaprolactone/Collagen for wound healing. Int J Biol Macromol

  41. Gurny R, Meyer JM, Peppas NA (1984) Bioadhesive intraoral release systems: design, testing and analysis. Biomaterials 5:336–340. https://doi.org/10.1016/0142-9612(84)90031-0

    Article  CAS  PubMed  Google Scholar 

  42. Laffleur F, Krouská J, Tkacz J et al (2018) Buccal adhesive films with moisturizer-the next level for dry mouth syndrome? Int J Pharm 550:309–315

    Article  CAS  Google Scholar 

  43. Yavari Maroufi L, Ghorbani M, Mohammadi M, Pezeshki A (2021) Improvement of the physico-mechanical properties of antibacterial electrospun poly lactic acid nanofibers by incorporation of guar gum and thyme essential oil. Colloids Surf A Physicochem Eng Aspects. https://doi.org/10.1016/j.colsurfa.2021.126659

    Article  Google Scholar 

  44. Ghorbani M, Mahmoodzadeh F, Yavari Maroufi L, Nezhad-Mokhtari P (2020) Electrospun tetracycline hydrochloride loaded zein/gum tragacanth/poly lactic acid nanofibers for biomedical application. Int J Biol Macromol 165:1312–1322. https://doi.org/10.1016/j.ijbiomac.2020.09.225

    Article  CAS  PubMed  Google Scholar 

  45. Chen H, Sun S, Li J et al (2013) Different intravitreal properties of three triamcinolone formulations and their possible impact on retina practice. Invest Ophthalmol Visual Sci 54:2178–2185. https://doi.org/10.1167/iovs.12-11460

    Article  CAS  Google Scholar 

  46. Shaikh S, Ho S, Engelmann LA, Klemann SW (2006) Cell viability effects of triamcinolone acetonide and preservative vehicle formulations. Brit J Ophthalmol 90:233–236. https://doi.org/10.1136/bjo.2005.076190

    Article  CAS  Google Scholar 

  47. A Al-Sandooq T, M Al-Waiz M, A Kashmoola M, Salman H (2008) Differences between low level laser therapy and triamcinolone acetonide kenalog on healing of recurrent aphthous ulceration. Ann College Med Mosul 34:35–41

  48. Su Z, Hu J, Cheng B, Tao X (2021) Efficacy and safety of topical administration of tacrolimus in oral lichen planus: an updated systematic review and meta-analysis of randomized controlled trials. J Oral Pathol Med. https://doi.org/10.1111/jop.13217

    Article  PubMed  Google Scholar 

  49. Kadir AKMS, Islam AHMM, Ruhan M, et al (2020) Recurrent aphthous stomatitis: an overview. Int J Oral Health Dentistry 4:6–11. https://doi.org/10.18231/2395-499x.2018.0002

  50. Shahi Y, Samadi FM, Mukherjee S (2020) Plasma lipid peroxidation and antioxidant status in patients with oral precancerous lesions and oral cancer. Oral Sci Int 17:86–93. https://doi.org/10.1002/osi2.1050

    Article  Google Scholar 

  51. Curra M, Martins MAT, Lauxen IS et al (2013) Effect of topical chamomile on immunohistochemical levels of IL-1β and TNF-α in 5-fluorouracil-induced oral mucositis in hamsters. Cancer Chemother Pharmacol 71:293–299

    Article  Google Scholar 

  52. Guimarães ALS, de Fátima Correia-Silva J, de Sa AR et al (2007) Investigation of functional gene polymorphisms IL-1β, IL-6, IL-10 and TNF-α in individuals with recurrent aphthous stomatitis. Arch Oral Biol 52:268–272

    Article  Google Scholar 

  53. Gould SA, White M, Wilbrey AL et al (2021) Protection against oxaliplatin-induced mechanical and thermal hypersensitivity in Sarm1−/− mice. Exp Neurol. https://doi.org/10.1016/j.expneurol.2021.113607

    Article  PubMed  Google Scholar 

  54. Alipour M, Pouya B, Aghazadeh Z et al (2021) The Antimicrobial, antioxidative, and anti-inflammatory effects of polycaprolactone/gelatin scaffolds containing chrysin for regenerative endodontic purposes. Stem Cells Int 2021:1–11. https://doi.org/10.1155/2021/3828777

    Article  CAS  Google Scholar 

  55. Alipour M, Fadakar S, Aghazadeh M et al (2021) Synthesis, characterization, and evaluation of curcumin-loaded endodontic reparative material. J Biochem Mol Toxicol. https://doi.org/10.1002/jbt.22854

    Article  PubMed  Google Scholar 

  56. Yuniati R, Munita FF, Dayana B, Amalia F (2018) Difference of tumor necrosis factor (TNF-α) levels in multibacillary leprosy between reversal reaction and non-reversal reaction patients. Pakistan J Med Health Sci 12:1381–1383

    Google Scholar 

  57. Ziaudeen S, Ravindran R (2017) Assessment of oxidant-antioxidant status and stress factor in recurrent aphthous stomatitis patients: Case control study. J Clin Diagnostic Res 11:ZC01–ZC04. https://doi.org/10.7860/JCDR/2017/22894.9348

  58. Babaee N, Mansourian A, Momen-Heravi F et al (2010) The efficacy of a paste containing Myrtus communis (Myrtle) in the management of recurrent aphthous stomatitis: a randomized controlled trial. Clinical Oral Investigations 14:65–70

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the “Stem Cell Research Center, Tabriz University of Medical Sciences” and “Sara Research Laboratory” for their kindly cooperation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marjan Ghorbani or Zahra Aghazadeh.

Ethics declarations

Conflict of Interest

There are no conflicts to declare.

Ethical Approval

The study procedure was approved by the Ethical Committee of Tabriz University of Medical Science (Approval ID: 66362).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alipour, M., Aghazadeh, M., Ramezani, S. et al. Fabrication of a Novel Fibrous Mat Based on Gliadin/Ethylcellulose Incorporated with Triamcinolone for Treatment of Oral Ulcers. J Polym Environ 30, 2579–2588 (2022). https://doi.org/10.1007/s10924-021-02365-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02365-2

Keywords

Navigation