Skip to main content
Log in

Environmentally Benign Blue Emissive Films from Host-Dopant Interaction of PLA–Bischalcone Combination with High UV Endurance

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This work reports the fabrication of blue luminescent bioplastic PLA films on doping with 4-chloro and 4-fluoro substituted bisarylidene cyclohexanone derivatives A and B. The successful doping of A and B to host matrix was evidenced by spectroscopic and analytical methods. The appearance of an absorption band at 1665 cm−1 owing to the conjugated alkene stretching frequency for bischalcones approved the presence of guest molecules. Similarly, the crystallinity of the films was improved by the addition of dopants above 2%. Molecular dynamics simulations of mechanical properties for neat PLA for lowest dopant concentration (2%) revealed decrease in Young’s modulus and bulk modulus. The doping resulted in bathochromic shift from λmax 290 nm to the range of 335–340 nm with high degree of UV endurance. The PLA/dopant composite films (2–8%) effectively absorbed UVB as well as UVA radiation with promising SPF ranging from 12.71–39.2, 13.26–37.57 and UPF from 17.14–902.50, 9.39–197.01 for dopant A and B respectively. The photoluminescence emission maxima were observed in the blue region at 461 nm and 463 nm for the films doped with A and B. The effective scintillation with large Stoke’s shift could be due to J-aggregate alignment of the dopants in the host matrix. The quantitative quantum yield (QY) was found to vary in the range of 0.17–0.42 for A and 0.15–0.46 for B which were comparable with flurophore anthracene with QY 0.27–0.36. Hence, these environmentally benign bioplastic composite materials with high SPF and UPF could find use as wide range UV filtering and also as blue emissive materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9
Fig.10

Similar content being viewed by others

References

  1. Klauk H (2010) Organic thin-film transistors. Chem Soc Rev 39:2643–2666. https://doi.org/10.1039/B909902F

    Article  CAS  PubMed  Google Scholar 

  2. Kumar B, Kaushik BK, Negi YS (2014) Organic thin film transistors: structures, models, materials, fabrication, and applications: a review. Polym Rev 54:33–111. https://doi.org/10.1080/15583724.2013.848455

    Article  CAS  Google Scholar 

  3. Wu J, Fei F, Wei C, Chen X, Nie S, Zhang D, Cui Z (2018) Efficient multi-barrier thin film encapsulation of OLED using alternating Al2O3 and polymer layers. RSC Adv 8:5721–5727. https://doi.org/10.1039/C8RA00023A

    Article  CAS  Google Scholar 

  4. Yoon KH, Kim HS, Han KS, Kim SH, Lee Y-EK, Shrestha NK, Sung MM (2017) Extremely high barrier performance of organic-inorganic nanolaminated thin films for organic light-emitting diodes. ACS Appl Mater Interfaces 9:5399–5408. https://doi.org/10.1021/acsami.6b15404

    Article  CAS  PubMed  Google Scholar 

  5. Shah A (1999) Photovoltaic technology: the case for thin-film solar cells. Science 285:692–698. https://doi.org/10.3390/bios8010012

    Article  CAS  PubMed  Google Scholar 

  6. Buse K, Denz C, Krolikowski W (2009) Photorefractive materials, effects, and devices: control of light and matter. Appl Phys B 95:389–390. https://doi.org/10.1007/s00340-009-3530-z

    Article  CAS  Google Scholar 

  7. Thomas J, Norwood RA, Peyghambarian N (2009) Non-linear optical polymers for photorefractive applications. J Mater Chem 19:7476–7489. https://doi.org/10.1039/B908130E

    Article  CAS  Google Scholar 

  8. Hartono A, Sanjaya E, Ramli R (2018) Glucose sensing using capacitive biosensor based on polyvinylidene fluoride thin film. Biosensors 8:1–10. https://doi.org/10.3390/bios8010012

    Article  CAS  Google Scholar 

  9. Lackner JM, Waldhauser W, Major R, Major L, Hartmann P (2013) Biomimetics in thin film design – Wrinkling and fracture of pulsed laser deposited films in comparison to human skin. Surf.Coat Technol 215:192–198. https://doi.org/10.1016/j.surfcoat.2012.08.080

    Article  CAS  Google Scholar 

  10. Panda D, Tseng T-Y (2013) Growth, dielectric properties, and memory device applications of ZrO2 thin films. Thin Solid Films 531:1–20. https://doi.org/10.1016/j.tsf.2013.01.004

    Article  CAS  Google Scholar 

  11. Scott JF, Dawber M (2002) Physics of ferroelectric thin-film memory devices. Ferroelectrics 265:119–128. https://doi.org/10.1080/00150190208260611

    Article  Google Scholar 

  12. Yi He Hattori R, Kanicki J (2001) Improved a-Si: H TFT pixel electrode circuits for active-matrix organic light emitting displays. IEEE Trans Electron Devices 48:1322–1325. https://doi.org/10.1109/16.930646

    Article  Google Scholar 

  13. Sun K, Chen L, Guo J, Teng D, Liu L (2016) A LTPS-TFT pixel circuit for active matrix organic light emitting diode based on improved current mirror. Displays 44:1–4. https://doi.org/10.1016/j.displa.2016.05.005

    Article  Google Scholar 

  14. Latha MS, Jacintha M, Shobha V, Rutuja Sham S, Sudhakar B, Binny K, Shantala B, Sunoj V, Prabhakar R, Naveen Kumar BR (2013) Sunscreening agents: A Review. J Clin Aesthet Dermatol 6:16–26

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee BM, Yu HH, Kim YH, Kim NH, Yoon JA, Kim WY, Mascher P (2013) Highly efficient blue organic light emitting diodes using dual emissive layers with host-dopant system. J. Photonics Energy 3(033598):1–8. https://doi.org/10.1117/1.jpe.3.033598

    Article  Google Scholar 

  16. Jang JG, Ji HJ (2012) Blue phosphorescent organic light-emitting devices with the emissive layer of mCP: FCNIr(pic). Adv Mater Sci Eng 2012:1–5. https://doi.org/10.1155/2012/192731

    Article  CAS  Google Scholar 

  17. Loued W, Wéry J, Dorlando A, Alimi K (2015) A combined study based on experimental analyses and theoretical calculations on properties of poly (lactic acid) under annealing treatment. J Mol Struct 1081:486–493. https://doi.org/10.1016/j.molstruc.2014.10.010

    Article  CAS  Google Scholar 

  18. Harshitha KR, Sarojini BK, Narayana B, Maidur SR, Patil PS, Kumara K (2019) Donor-π-Acceptor-π-Donor class of 2,5-dibenzylidenecyclopentan-1-one analogues as efficient third order nonlinear optical and photoluminescent materials – An experimental investigation. Opt Laser Technol 117:304–315. https://doi.org/10.1016/j.optlastec.2019.04.026

    Article  CAS  Google Scholar 

  19. Rashmi M, Indira J, Sarojini BK, Mohan BJ, Hubert Joe I, Aswathy P (2021) Ultrafast nonlinear optical properties of cyclohexenone carboxylate derivatives and their application as organic saturable absorbers. Opt Laser Technol 139:106902–106911

    Article  CAS  Google Scholar 

  20. Butcher RJ, Yathirajan HS, Sarojini BK, Indira NB (2006) 2, 6-Bis (4-methoxybenzylidene)cyclohexanone. Acta CrystE 62:1910–1912

    Google Scholar 

  21. Knoll GF (2010) Radiation Detection and Measurement. John Wiley & Sons, New York

    Google Scholar 

  22. Bertrand GHV, Hamel M, Sguerra F (2014) Current status on plastic scintillators modifications. Chem Eur J 20:15660–15685. https://doi.org/10.1002/chem.201404093

    Article  CAS  PubMed  Google Scholar 

  23. Pai AJ, Sarojini BK, Harshitha KR, ShivaramaHolla B, Lobo AG (2019) Spectral, morphological and optical studies on bischalcone doped polylactic acid (PLA) thin films as luminescent and UV radiation blocking materials. Opt Mater 90:145–151. https://doi.org/10.1016/j.optmat.2019.02.028

    Article  CAS  Google Scholar 

  24. Carapina da Silva C, Pacheco BS (2019) Antiparasitic activity of synthetic curcuminmonocarbonyl analogues against Trichomonasvaginalis. Biomed Pharmacother 111:367–377. https://doi.org/10.1016/j.biopha.2018.12.058

    Article  CAS  PubMed  Google Scholar 

  25. Lotfy G, Said MM, El Ashry ESH, El Tamany ESH, Abdel Aziz YM, Soliman SM, Barakat A (2017) Synthesis, structure combined with conformational analysis, biological activities and docking studies of bisbenzylidenecyclohexanone derivatives. J Saudi Chem Soc 21:619–632. https://doi.org/10.1016/j.jscs.2017.04.002

    Article  CAS  Google Scholar 

  26. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19. https://doi.org/10.1006/jcph.1995.1039

    Article  CAS  Google Scholar 

  27. Berendsen HJC, Postma JPM, van Gunsteren WF (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690. https://doi.org/10.1063/1.448118

    Article  CAS  Google Scholar 

  28. Maple JR, Hwang M-J, Stockfisch TP, Dinur U, Waldman M, Ewig CS, Hagler AT (1994) Derivation of class II force fields. I. Methodology and quantum force field for the alkyl functional group and alkane molecules. J Comput Chem 15:162–182. https://doi.org/10.1002/jcc.540150207

    Article  CAS  Google Scholar 

  29. Allen MP, Tildesley DJ (2017) Computer simulation of liquids: Second edition, Oxford University Press Doi: https://doi.org/10.1093/oso/9780198803195.001.0001

  30. Metatla N, Soldera A (2011) Effect of the molar volume on the elastic properties of vinylic polymers: a static molecular modeling approach. Macromol Theory Simul 20:266–274. https://doi.org/10.1002/mats.201000088

    Article  CAS  Google Scholar 

  31. Porzio F, Cuierrier É, Wespiser C, Tesson S, Underhill RS, Soldera A (2016) Mechanical equilibrium, a prerequisite to unveil auxetic properties in molecular compounds. MolSimul 43:169–175. https://doi.org/10.1080/08927022.2016.1241397

    Article  CAS  Google Scholar 

  32. Meirovitch H (1983) Computer simulation of self-avoiding walks: Testing the scanning method. Chem Phys 79:502–508. https://doi.org/10.1063/1.445549

    Article  CAS  Google Scholar 

  33. Anousheh N, Godey F, Soldera A (2016) Unveiling the impact of regioisomerism defects in the glass transition temperature of PVDF by the mean of the activation energy. J Polym Sci Part A Polym Chem 55:419–426. https://doi.org/10.1002/pola.28407

    Article  CAS  Google Scholar 

  34. Soldera A, Metatla N (2006) Glass transition of polymers: Atomistic simulation versus experiments. Phys Rev E - Stat Nonlinear, Soft Matter Phys 74(6):061803. https://doi.org/10.1103/PhysRevE.74.061803

    Article  CAS  Google Scholar 

  35. Theodorou DN, Suter UW (1985) Detailed molecular structure of a vinyl polymer glass. Macromolecules 18:1467–1478. https://doi.org/10.1021/ma00149a018

    Article  CAS  Google Scholar 

  36. El-Bashir SM, Yahia IS, Binhussain MA, AlSalhi MS (2017) Designing of PVA/Rose Bengal long-pass optical window applications. Results Phys 7:1238–1244. https://doi.org/10.1016/j.rinp.2017.03.033

    Article  Google Scholar 

  37. Krzysztof M, Hieronim K, Wojciech G, Zbigniew Z (2011) Effect of ionizing radiation on the properties of PLA packaging materials. Nukleonika 56:65−69 https://www.researchgate.net/publication/290022773

  38. Masheer AK (2018) Sun protection factor determination studies of some sunscreen formulations used in cosmetics for their selection. J Drug Deliv Ther 8:149–151. https://doi.org/10.22270/jddt.v8i5-s.1924

  39. Yang W, Jing S, Ting L, Piming M, Huiyu B, Yi X, Mingqing C, Weifu D (2017) A Novel UV-shielding and transparent polymer film: when bioinspired dopamine−melanin hollow nanoparticles join polymers. ACS Appl Mater Interfaces 9:36281–36289. https://doi.org/10.1021/acsami.7b08763

    Article  CAS  Google Scholar 

  40. Yanli Z, Yan S, Yongfeng Z, Zhonghao W, Weichen G, Peng J, Dan Z, Ya C, Youbing L (2020) Excitation-dependent long-life luminescent polymeric systems under ambient conditions. Angew Chem Int 59:9967–9971. https://doi.org/10.1002/anie.201912102

    Article  CAS  Google Scholar 

  41. Chaolong Y, Shaojun L, Jing X, Youbing L, Mingyong S, Lei L, Guoxia W, Jian H, Xuanlun W, Mangeng L (2015) Efficient red emission from poly(vinyl butyral) films doped with a novel europium complex based terpyridyl as ancillary ligand: synthesis, structural elucidation by Sparkle/RM1 calculation, and photophysical properties. Polym Chem 00:1–12. https://doi.org/10.1039/C5PY01956G

    Article  CAS  Google Scholar 

  42. Dan Z, Yongfeng Z, Zhonghao W, Yan Z, Xian Z, Liang G, Chang W, Chaolong Y, Hailong T, Youbing L (2021) Biodegradable film enabling visible light excitation of Hexanuclear Europium(III) complex for various applications. J Lumin 229:117706–117715. https://doi.org/10.1016/j.jlumin.2020.117706

    Article  CAS  Google Scholar 

  43. Zhonghao W, Yongfeng Z, Chang W, Xian Z, Yan Z, Liang G, Chaolong Y, Youbing L, Lunjun Q, Yanli Z (2020) Color-tunable polymeric long-persistent luminescence based on polyphosphazenes. Adv Mater. https://doi.org/10.1002/adma.201907355

    Article  Google Scholar 

  44. Technical Note 21–1: Guide for Absolute QY Measurements of Liquids, Edinburgh Instruments Ltd. 2 Bain Square, Livingston, EH54 7DQ, U.K. 1–7

Download references

Acknowledgements

Authors owe Department of Chemistry, Dharwad University for providing luminescence results of the sample and also thank Mangalore University for furnishing the characterization results in time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balladka Kunhanna Sarojini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pai, A.J., Sarojini, B.K., Harshitha, K.R. et al. Environmentally Benign Blue Emissive Films from Host-Dopant Interaction of PLA–Bischalcone Combination with High UV Endurance. J Polym Environ 30, 373–384 (2022). https://doi.org/10.1007/s10924-021-02196-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02196-1

Keywords

Navigation