Skip to main content
Log in

Synthesis of Novel Bio-based Urea-Urethane Aerogels In-Situ Impregnated with Catalytic Metallic Nanoparticles for the Removal of Methylene Blue and Congo Red from Wastewater

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

To combat environmental pollution resulting from discharge of hazardous contaminants into water streams, novel porous biocompatible urea-urethane aerogels in situ impregnated with catalytic metallic nanoparticles were synthesized. FTIR confirmed the formation of highly structured 2D-bifurcated hydrogen bonding network among neighboring urea groups creating aerogels that are strong enough to withstand the pressures of supercritical drying. In-situ impregnation with the catalytic metallic nanoparticles ensured that the systems are efficient in adsorbing, degrading and removing a variety of hazardous contaminants from polluted water. BET measurements indicated an almost reversible Type II isotherm and confirmed the macroporosity of the samples with surface area of around 6 m2 g−1. And swelling capvity of up to 700% The equilibrium uptake capacity of each contaminant increased with increasing the initial concentration due to the increasing driving force and has reached more than 90%. Thermodynamics interpretation indicated exothermic spontaneous processes for all systems with R2 values around 0.9. Almost all adsorption processes followed a Langmuirian type behavior. Kinetics profile revealed that the adsorption is best fitted by pseudo-second order model with an intra-particle diffusion model suggesting that both pore diffusion and contaminant uptake by the aerogels play pivotal role in controlling the kinetics of the adsorption process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Data and experimental information used to produce this manuscript or needed to reproduce the work reported herewith are all available in the various sections of this manuscript.

References

  1. Crini G (2006) Bioresour Technol 97:1061

    CAS  PubMed  Google Scholar 

  2. Sahoo C, Gupta A, Pal A (2005) Desalination 181:91

    CAS  Google Scholar 

  3. William L, Kostedt I, Ismail AA, Mazyck DW (2008) Ind Eng Chem Res 47:1483

    Google Scholar 

  4. Safavi A, Momeni S (2012) J Hazard Mater 201:125

    PubMed  Google Scholar 

  5. Aly HF, Abd-Elhamid AI (2018) Water Environ Res 90:807

    CAS  PubMed  Google Scholar 

  6. Rafatullah M, Sulaiman O, Hashim R, Ahmad A (2010) J Hazard Mater 177:70

    CAS  PubMed  Google Scholar 

  7. Vakili M, Rafatullah M, Babak S, Abdullah AZ, Ibrahim MH, Tan KB, Gholami Z, Amouzgar P (2014) Carbohydr Polym 113:115

    CAS  PubMed  Google Scholar 

  8. Daud NK, Ahmad MA, Hameed BH (2010) Chem Eng J 165:111

    CAS  Google Scholar 

  9. Shahwan T, Abu Sirriah S, Nairat M, Boyaci E, Eroglu AE, Scott TB, Hallam KR (2011) Chem Eng J 172:258

    CAS  Google Scholar 

  10. Wang X, Mao W, Zhang J, Han Y, Quan C, Zhang Q, Yang T, Yang J, Li X, Huang W (2015) J Colloid Interface Sci 448:17

    CAS  PubMed  Google Scholar 

  11. Sato T, Uehara T, Yoshida H (2004) Cell Polym 23:145

    CAS  Google Scholar 

  12. Madkour TM, Azzam RA (2013) Eur Polym J 49:439

    CAS  Google Scholar 

  13. Madkour TM, Azzam RA (2002) J Polym Sci Pol Chem 40:2526

    CAS  Google Scholar 

  14. Abu-Zahra NH, Gunashekar S (2014) Int J Chem Mol Nucl Mater Met Eng 8:273

    Google Scholar 

  15. Braun T, Farag AB (1978) Anal Chem Acta 99:1

    CAS  Google Scholar 

  16. Azzam RA, Madkour TM (2008) Int J Energy Environ 2:56

    Google Scholar 

  17. Weigold L, Mohite DP, Mahadik-Khanolkar S, Leventis N, Reichenauer G (2013) J Non-Cryst Solids 368:105

    CAS  Google Scholar 

  18. Shinko A, Jana SC, Meador MA (2018) J Non-Cryst Solids 487:19

    CAS  Google Scholar 

  19. Diascorna N, Calasb S, Salléec H, Acharda P, Rigaccia A (2015) J Supercrit Fluid 106:76

    Google Scholar 

  20. Madkour TM, Azzam RA, Mark JE (2006) J Polym Sci Pol Phys 44:2524

    CAS  Google Scholar 

  21. Marcos-Fernandez A, Lozano AE, Gonzalez L, Rodriguez A (1997) Macromolecules 30:3584

    CAS  Google Scholar 

  22. Ning L, De-Ning W, Sheng-Kang Y (1997) Macromolecules 30:4405

    CAS  Google Scholar 

  23. Born L, Hespe H (1985) Colloid Polym Sci 263:335

    CAS  Google Scholar 

  24. Bachmann F, Reimer J, Ruppenstein M, Thiem J (2001) Macromol Chem Phys 202:3410

    CAS  Google Scholar 

  25. Garcon R, Clerk C, Gesson J-P, Bordado J, Nunes T, Caroco S, Gomes PT, Minas da Piedade ME, Rauter AP (2001) Carbohydr Polym 45:123

    CAS  Google Scholar 

  26. Atchudan R, Edison TNJI, Perumal S, Karthikeyan D, Lee YR (2017) J Photochem Photobiol A Chem 333:92

    CAS  Google Scholar 

  27. Mondal S, Reyes MEDA, Pal U (2017) RSC Adv 7:8633

    CAS  Google Scholar 

  28. Atchudan R, Edison TNJI, Perumal S, Karthikeyan D, Lee YR (2016) J Photochem Photobiol B Biol 162:500

    CAS  Google Scholar 

  29. Zanella R, Avella E, Ramírez-Zamora RM, Castillón-Barraza F, Durán-Álvarez JC (2017) Environ Technol 39:2353

    PubMed  Google Scholar 

  30. Ashokkumar S, Ravi S, Kathiravan V, Velmurugan S (2014) Acta-Part A Mol Biomol Spectrosc 121:88

    CAS  Google Scholar 

  31. Liu SY, Cai Y, Cai XY, Li H, Zhang F, Mu QY, Liu YJ, Wang YD (2013) Appl Catal A: Gen 453:45

    CAS  Google Scholar 

  32. Wei S, Hu X, Liu H, Wang Q, He C (2015) J Hazard Mater 294:168

    CAS  PubMed  Google Scholar 

  33. Liu H, Guo W, Li Y, He S, He C (2018) J Environ Chem Eng 6:59

    CAS  Google Scholar 

  34. Mondal A, Adhikary B, Mukherjee D (2015) Colloids Surf A 482:248

    CAS  Google Scholar 

  35. Malwal D, Gopinath P (2015) Environ Sci Nano 2:78

    CAS  Google Scholar 

  36. Madkour TM, Hagag FM, Mamdouh W, Azzam RA (2012) Polymer 53:5788

    CAS  Google Scholar 

  37. Barick AK, Tripathy DK (2011) Mater Sci Eng, B 176:1435

    CAS  Google Scholar 

  38. Jerabek M, Major Z, Lang RW (2010) Polym Test 29:302

    CAS  Google Scholar 

  39. Tosh B, Routray R (2014) Chem Sci Rev Lett 3:74

    Google Scholar 

  40. Feng N, Guo X, Liang S, Zhu Y, Liu J (2011) J Hazard Mater 185:49

    CAS  PubMed  Google Scholar 

  41. Madkour TM, Abdelazeem EA, Tayel A, Mustafa G, Siam R (2016) J Appl Polym Sci 133:43125

    Google Scholar 

  42. Madkour TM, Mark JE (1994) Macromol Rep A31:153

    CAS  Google Scholar 

  43. Madkour TM, Hamdi MS (1996) J Appl Polym Sci 61:1239

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support they received from the Egyptian Academy of Scientific Research and Technology (ASRT) through their National Programs & Initiatives 2016 for the collaborative project between Helwan University and the American University in Cairo awarded to the authors, Rasha Azzam and Tarek Madkour. The authors also sincerely thank Dr. Mayyada Elsayed for stimulating kinetics discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek M. Madkour.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest of any kind.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 316 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azzam, R.A., Madkour, T.M. Synthesis of Novel Bio-based Urea-Urethane Aerogels In-Situ Impregnated with Catalytic Metallic Nanoparticles for the Removal of Methylene Blue and Congo Red from Wastewater. J Polym Environ 29, 1444–1459 (2021). https://doi.org/10.1007/s10924-020-01970-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01970-x

Keywords

Navigation