Skip to main content
Log in

A Recycling-Focused Assessment of the Oxidative Thermomechanical Degradation of HDPE Melt Containing Pro-oxidant

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This study shows the effect of a pro-oxidant (oxo-biodegradable) additive on the oxidative thermomechanical degradation of high-density polyethylene (HDPE). It also allows us to predict the behavior of the material when subjected to mechanical recycling or to biodegradation. When HDPE, one of the most consumed thermoplastics worldwide, is transformed into a product or when subjected to primary and/or secondary recycling it will undergo thermomechanical degradation. According to current standards HDPE is not biodegradable, therefore pro-oxidants are added to many HDPE products, which can compromise the product's life. Knowledge on the influence of pro-oxidants on HDPE in the melt is limited and the objective of this study is to assess the behavior of HDPE containing pro-oxidant manganese stearate (MnSt) in the oxidative thermomechanical degradation process. Thermomechanical degradation tests were conducted in a closed-chamber torque rheometer. FTIR and SEC results agreed with those of torque rheometry and showed that oxidative thermomechanical degradation of HDPE increases with increasing manganese stearate concentration. Degradation resulted in an increase in the number of oxygenated functional groups, mainly ketones, aldehydes and carboxylic acids, and reduction in the weight-average molar mass of HDPE. MnSt may have acted both as a lubricant and pro-oxidant during processing with predominance of one or the other effect at different stages along the oxidative thermomechanical degradation of HDPE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1

(Adapted from [8, 9, 13, 17, 32,33,34,35, 52,53,54,55, 60, 62,63,64,65,66, 68, 83,84,85,86,87])

Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Malpass DB (2010) Introduction to industrial polyethylene: properties, catalysts, processes. Wiley, Hoboken

    Google Scholar 

  2. Plastic shopping bags Options paper (2016) Environment Protection Authority, Sydney NSW

  3. Robertson GL (2013) Food packaging: principles and practice. Taylor & Francis, Boca Raton

    Google Scholar 

  4. The new plastics economy: rethinking the future of plastics (2016) World Economic Forum

  5. Plastics—the Facts 2018. https://www.plasticseurope.org/en/resources/publications/619-plastics-facts-2018 (accessed august 28, 2018).

  6. Albertsson A-C, Andersson SO, Karlsso S (1987) The mechanism of biodegradation of polyethylene. Polym Degrad Stab 18:73–87

    CAS  Google Scholar 

  7. Albertsson A-C, Karlsso S (1988) The three stages in degradation of polymers-polyethylene as a model substance. J Appl Polym Sci 35:1289–1302

    CAS  Google Scholar 

  8. Klemchuk PP (1990) Degradable plastics: a critical review. Polym Degrad Stab 27:183–202

    CAS  Google Scholar 

  9. Albertsson A-C, Erlandsson B, Hakkarainen M, Karlsson S (1998) Molecular weight changes and polymeric matrix changes correlated with the formation of degradation products in biodegraded polyethylene. J Environ Polym Degrad 6(4):187–195

    CAS  Google Scholar 

  10. Vazquez YV, Ressia JA, Cerrada ML, Barbosa SE, Vallés EM (2019) Prodegradant additives effect onto comercial polyolefins. J Polym Environ 27:464–471

    CAS  Google Scholar 

  11. Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo J-E (2008) Polymer biodegradation: mechanisms and estimation techniques. Chemosphere 73:429–442

    CAS  PubMed  Google Scholar 

  12. Montazer Z, Habibi-Najafi MB, Mohebbi M, Oromiehei A (2018) Microbial degradation of uv-pretreated low-density polyethylene films by novel polyethylene-degrading bacteria isolated from plastic-dump soil. J Polym Environ 26:3613–3625

    CAS  Google Scholar 

  13. Ammala A, Bateman S, Deana K, Petinakis E, Sangwan P, Wong S, Yuana Q, Yu L, Patrick C, Leong KH (2011) An overview of degradable and biodegradable polyolefins. Prog Polym Sci 36:1015–1049

    CAS  Google Scholar 

  14. Luckachan GE, Pillai CKS (2011) Biodegradable polymers- A review on recent trends and emerging perspectives. J Polym Environ 19:637–676

    CAS  Google Scholar 

  15. Vázquez-Morillas A, Beltrán-Villavicencio M, Alvarez-Zeferino JC, Osada-Velázquez MH, Moreno A, Martínez L, Yañez JM (2016) Biodegradation and ecotoxicity of polyethylene films containing pro-oxidant additive. J Polym Environ 24:221–229

    Google Scholar 

  16. Roy PK, Hakkarainen M, Albertsson A-C (2014) Exploring the biodegradation potential of polyethylene through a simple chemical test method. J Polym Environ 22:69–77

    CAS  Google Scholar 

  17. Roy PK, Singh P, Kumar D, Rajagopal C (2010) Manganese stearate initiated photo-oxidative and thermo-oxidative degradation of ldpe, lldpe and their blends. J Appl Polym Sci 117:524–533

    CAS  Google Scholar 

  18. Focke WW, Mashele RP, Nhlapo NS (2011) Stabilization of low-density polyethylene films containing metal stearates as photodegradants. J Vinyl Addit Technol 27:21–27

    Google Scholar 

  19. Antunes MC, Agnelli JAM, Babetto AS, Bonse BC, Bettini SHP (2017) Abiotic thermo-oxidative degradation of high density polyethylene: Effect of manganese stearate concentration. Polym Degrad Stab 143:95–103

    CAS  Google Scholar 

  20. Maryudi DN, Beg MDH, Yunus RM (2017) Comparison of manganese laurate, manganese palmitate and manganese stearate on accelerating degradation of hdpe during natural weathering. J Teknol (Sciences & Engineering) 79(7):123–130

    Google Scholar 

  21. Antunes MC, Agnelli JAM, Babetto AS, Bonse BC, Correlating BSHP (2018) Different techniques in the thermooxidative degradation monitoring of high density polyethylene containing pro-degradant and antioxidants. Polym Test 69:182–187

    CAS  Google Scholar 

  22. Nikolic M, Gauthier E, George K, Cash G, Jonge MD, Howard DL, Paterson D, Laycock B, Halley PJ, George G (2012) Antagonism between transition metal pro-oxidants in polyethylene films. Polym Degrad Stab 97:1178–1188

    CAS  Google Scholar 

  23. Osawa Z (1988) Role of metals and metal-deactivators in polymer degradation. Polym Degrad Stab 20:203–236

    CAS  Google Scholar 

  24. Liu X, Gao C, Sangwan P, Yu L, Tong Z (2014) Accelerating the degradation of polyolefins through additives and blending. J Appl Polym Sci 131:40750

    Google Scholar 

  25. Portillo F, Yashchuk O, Hermida É (2016) Evaluation of the rate of abiotic and biotic degradation of oxodegradable polyethylene. Polym Test 53:58–69

    CAS  Google Scholar 

  26. Jakubowicz I, Enebro J (2012) Effects of reprocessing of oxobiodegradable and non degradable polyethylene on the durability of recycled materials. Polym Degrad Stab 97:316–321

    CAS  Google Scholar 

  27. Glowik-Lazarczyk K, Jurczyk S, Chmielnicki B, Konieczny J, Labisz K (2017) Influence of oxo-degradable pe recyclate Addition on the degradation of comercial low density polyethylene (PE-LD). J Environ Prot Ecol 18(3):947–961

    CAS  Google Scholar 

  28. Aldas M, Paladines A, Valle V, Pazmiño M, Quiroz F (2018) Effect of the prodegradant-additive plastics incorporated on the polyethylene recycling. Int J Polym Sci. https://doi.org/10.1155/2018/2474176

    Article  Google Scholar 

  29. Ignatyev IA, Thielemans W, Beke BV (2018) Recycling of polymers: a review. Chemsuschem Rev. https://doi.org/10.1002/cssc.201300898

    Article  Google Scholar 

  30. Perugini F, Mastellone ML, Arena U (2005) A life cycle assessment of mechanical and feedstock recycling options for management of plastic packaging wastes. Environ Prog 24(2):137–154

    CAS  Google Scholar 

  31. Menikpura SNM, Gheewala SH, Bonnet S, Chiemchaisri C (2013) Evaluation of the effect of recycling on sustainability of municipal solid waste management in Thailand. Waste Biomass Valor 4:237–257

    CAS  Google Scholar 

  32. Dauvergne P (2018) Why is the global governance of plastic failing the oceans? Glob Environ Chang 51:22–31

    Google Scholar 

  33. Wang W, Themelis NJ, Sun K, Bourtsalas AC, Huang Q, Zhang Y, Wu Z (2019) Current influence of China’s ban on plastic waste imports. Waste Dispos Sustain Energy 1:67–78

    Google Scholar 

  34. Al-Salem SM (2019) Influential parameters on natural weathering under harsh climatic conditions of mechanically recycled plastic film specimens. J Environ Manag 230:355–365

    CAS  Google Scholar 

  35. Greene JP (2014) Sustainable plastics: Environmental assessments of biobased, biodegradable, and recycled plastics. Wiley, Hoboken

    Google Scholar 

  36. Gugumus F (1999) Physico-chemical aspects of polyethylene processing in open mixers 1: review of published work. Polym Degrad Stab 66:161–172

    CAS  Google Scholar 

  37. Epacher E, Tolvétha J, Kröhnke C, Pukánszky B (2000) Processing stability of high density polyethylene: effect of adsorbed and dissolved oxygen. Polymer 41:8401–8408

    CAS  Google Scholar 

  38. Pinheiro LA, Chinelatto MA, Canevarolo SV (2004) The role of chain scission and chain branching in high density polyethylene during thermo-mechanical degradation. Polym Degrad Stab 86:445–453

    CAS  Google Scholar 

  39. Pinheiro LA, Chinelatto MA, Canevarolo SV (2006) Evaluation of Philips and ZieglereNatta high-density polyethylene degradation during processing in an internal mixer using the chain scission and branching distribution function analysis. Polym Degrad Stab 91:2324–2332

    CAS  Google Scholar 

  40. Pielichowski K, Njuguna J (2005) Thermal degradation of polymeric materials. Rapra Technology Limited, Shropshire

    Google Scholar 

  41. Kriston I, Orbán-Mester A, Nagy G, Staniek P, Földes E, Pukánszky B (2009) Melt stabilisation of Phillips type polyethylene, part I: the role of phenolic and phosphorous antioxidants. Polym Degrad Stab 94:719–729

    CAS  Google Scholar 

  42. Kriston I, Orbán-Mester A, Nagy G, Staniek P, Földes E, Pukánszky B (2009) Melt stabilisation of Phillips type polyethylene, part II: correlation between additive consumption and polymer properties. Polym Degrad Stab 94:1448–1456

    CAS  Google Scholar 

  43. Crompton TR (2010) Thermo-oxidative degradation of polymers. iSmithers Shawbury, Shropshire

  44. Gugumus F (2000) Physico-chemical aspects of polyethylene processing in an open mixer 2. Functional group formation on PELD processing. Polym Degrad Stab 67:35–47

    CAS  Google Scholar 

  45. Gugumus F (2000) Physico-chemical aspects of polyethylene processing in an open mixer 3. Experimental kinetics of functional group formation. Polym Degrad Stab 68:21–33

    CAS  Google Scholar 

  46. Gugumus F (2000) Physico-chemical aspects of polyethylene processing in an open mixer 5. Kinetics of hydroperoxide formation. Polym Degrad Stab 68:327–336

    CAS  Google Scholar 

  47. Gugumus F (2000) Physico-chemical aspects of polyethylene processing in na open mixer 6. Discussion of hydroperoxide formation and decomposition. Polym Degrad Stab 68:337–352

    CAS  Google Scholar 

  48. Gugumus F (2006) Physico-chemical aspects of polyethylene processing in an open mixer. Part 17: effect of oxygen availability. Polym Degrad Stab 91:324–338

    CAS  Google Scholar 

  49. Gugumus F (2002) Physico-chemical aspects of polyethylene processing in an open mixer 7. Polyethylene hydroperoxide distribution in the melt. Polym Degrad Stab 75:55–71

    CAS  Google Scholar 

  50. Gugumus F (2005) Physico-chemical aspects of polyethylene processing in an open mixer. Part 10: mechanisms and formal kinetics of hydroxyl group formation. Polym Degrad Stab 87:245–256

    CAS  Google Scholar 

  51. Gugumus F (2005) Physico-chemical aspects of polyethylene processing in an open mixer. Part 11: heterogeneous kinetics of hydroxyl group formation. Polym Degrad Stab 87:449–463

    CAS  Google Scholar 

  52. Gugumus F (2005) Physico-chemical aspects of polyethylene processing in an open mixer. Part 13 mechanisms and formal kinetics of ketone formation. Polym Degrad Stab 89:220–232

    CAS  Google Scholar 

  53. Gugumus F (2005) Physico-chemical aspects of polyethylene processing in an open mixer. Part 14: product yield on reaction of hydroperoxide with alcohol groups. Polym Degrad Stab 89:240–251

    CAS  Google Scholar 

  54. Gugumus F (2005) Physico-chemical aspects of polyethylene processing in an open mixer. Part 15: product yields on bimolecular hydroperoxide decomposition. Polym Degrad Stab 89:517–526

    CAS  Google Scholar 

  55. Gugumus F (2005) Physico-chemical aspects of polyethylene processing in an open mixer. Part 16: mechanisms and kinetics of ketone formation at low temperature. Polym Degrad Stab 90:53–66

    CAS  Google Scholar 

  56. Gugumus F (2006) Physico-chemical aspects of polyethylene processing in an open mixer. Part 18: mechanisms and kinetics of trans-vinylene group formation. Polym Degrad Stab 91:957–974

    CAS  Google Scholar 

  57. Gugumus F (2006) Physico-chemical aspects of polyethylene processing in an open mixer. Part 19: mechanisms and kinetics of vinyl and vinylidene group formation. Polym Degrad Stab 91:1333–1345

    CAS  Google Scholar 

  58. Gugumus F (2006) Physico-chemical aspects of polyethylene processing in an open mixer. Part 20: additional product yields on bimolecular hydroperoxide decomposition with an alcohol group. Polym Degrad Stab 91:1346–1355

    CAS  Google Scholar 

  59. Gugumus F (2006) Physico-chemical aspects of polyethylene processing in an open mixer. Part 21: improved product yields on true bimolecular hydroperoxide decomposition. Polym Degrad Stab 91:1606–1618

    CAS  Google Scholar 

  60. Gugumus F (2006) Physico-chemical aspects of polyethylene processing in an open mixer. Part 22: mechanisms and kinetics of vinyl and vinylidene group consumption. Polym Degrad Stab 91:2061–2078

    CAS  Google Scholar 

  61. Gugumus F (2006) Physico-chemical aspects of polyethylene processing in an open mixer. Part 23: mechanisms and kinetics of trans-vinylene group consumption. Polym Degrad Stab 91:2079–2092

    CAS  Google Scholar 

  62. Gugumus F (2006) Physico-chemical aspects of polyethylene processing in an open mixer. Part 24: experimental kinetics of aldehyde and carboxylic acid formation. Polym Degrad Stab 91:2499–2512

    CAS  Google Scholar 

  63. Gugumus F (2006) Physico-chemical aspects of polyethylene processing in an open mixer. Part 25: mechanisms of aldehyde and carboxylic acid formation. Polym Degrad Stab 91:3416–3428

    CAS  Google Scholar 

  64. Gugumus F (2006) Physico-chemical aspects of polyethylene processing in an open mixer. Part 26: formal kinetics of aldehyde and carboxylic acid formation at a constant rate. Polym Degrad Stab 91:2698–2714

    CAS  Google Scholar 

  65. Gugumus F (2006) Physico-chemical aspects of polyethylene processing in an open mixer. Part 27: formal kinetics of aldehyde and carboxylic acid formation in the initial stages. Polym Degrad Stab 91:3429–3447

    CAS  Google Scholar 

  66. Gugumus F (2007) Physico-chemical aspects of polyethylene processing in an open mixer. Part 28: formal kinetics of aldehyde and carboxylic acid formation in the advanced stages. Polym Degrad Stab 92:125–142

    CAS  Google Scholar 

  67. Gugumus F (2007) Physico-chemical aspects of polyethylene processing in an open mixer. Part 32: formal kinetics of g-lactone formation from secondary products Heterogeneous kinetics. Polym Degrad Stab 92:703–719

    CAS  Google Scholar 

  68. Sánchez KT, Allen NS, Liauw CM, Johnson B (2011) Effects of type of polymerization catalyst system on the degradation of polyethylenes in the melt state. Part 1: unstabilized polyethylenes (including metallocene types). J Vinyl Addit Technol 17:28–39

    Google Scholar 

  69. Instruction Manual (2007) HAAKE Polylab OS Rheomix 600 OS, Version 1.1. Thermo Electron (Karlsruhe) GmbH, Dieselstraβe 4, D-76227 Karlsruhe, Germany

  70. Meissner J, Hostettler J (1994) A new elongational rheometer for polymer melts and other highly viscoelastic liquids. Rheol Acta 33:1–21

    CAS  Google Scholar 

  71. ASTM D2765 (2016) Standard test methods for determination of gel content and swell ratio of crosslinked ethylene plastics

  72. ASTM D11 (2017) Standard Specification for Woven Wire Test Sieve Cloth and Test Sieves

  73. Thompson JM (2018) Infrared spectroscopy. Pan Stanford Publishing, Singapore

    Google Scholar 

  74. Bower DI, Maddams WF (1989) The vibrational spectroscopy of polymers. Cambridge University Press, Cambridge

    Google Scholar 

  75. Rideal GR, Padget JC (1976) The thermal-mechanical degradation of high density polyethylene. J Polym Sci 57:1–15

    CAS  Google Scholar 

  76. Al-Malaika S, Peng X, Watson H (2006) Metallocene ethylene-1-octene copolymers: influence of comonomer content on thermo-mechanical, rheological, and thermo-oxidative behaviours before and after melt processing in an internal mixer. Polym Degrad Stab 91:3131–3148

    CAS  Google Scholar 

  77. Salvalaggio M, Bagatin R, Fornaroli M, Fanutti S, Palmery S, Battistel E (2006) Multi-component analysis of low-density polyethylene oxidative degradation. Polym Degrad Stab 91:2775–2785

    CAS  Google Scholar 

  78. Yang R, Liu Y, Yu J, Wang K (2006) Thermal oxidation products and kinetics of polyethylene composites. Polym Degrad Stab 91:1651–1657

    CAS  Google Scholar 

  79. Roy PK, Surekha P, Rajagopal C, Chatterjee SN, Choudhary V (2007) Studies on the photo oxidative degradation of LDPE films in the presence of oxidised polyethylene. Polym Degrad Stab 92:1151–1160

    CAS  Google Scholar 

  80. Shen J, Costa L, Xu Y, Cong Y, Cheng Y, Liu X, Fu J (2014) Stabilization of highly crosslinked ultra high molecular weight polyethylene with natural polyphenols. Polym Degrad Stab 105:197–205

    CAS  Google Scholar 

  81. Yagoubi W, Abdelhafidi A, Sebaa M, Chabira SF (2015) Identification of carbonyl species of weathered LDPE films by curve fitting and derivative analysis of IR spectra. Polym Test 44:37–48

    CAS  Google Scholar 

  82. Measurement Methods for Films and Plastic. Shimadzu Corporation. https://www.shimadzu.com/an/ftir/support/ftirtalk/talk11/intro.html. Accessed 28 Aug 2019

  83. Celina MC (2013) Review of polymer oxidation and its relationship with materials performance and lifetime prediction. Polym Degrad Stab 98:2419–2429

    CAS  Google Scholar 

  84. Orden MU, Montes JM, Urreaga JM, Bento A, Ribeiro MR, Pérez E, Cerrada ML (2015) Thermo and photo-oxidation of functionalized metallocene high density polyethylene: effect of hydrophilic groups. Polym Degrad Stab 111:78–88

    Google Scholar 

  85. Mass S, Zweifel H (1989) Degradation and stabilization of high density Polyethylene during multiple extrusions. Polym Degrad Stab 25:217–245

    Google Scholar 

  86. Gugumus F (2002) Re-examination of the thermal oxidation reactions of polymers 2. Thermal oxidation of polyethylene. Polym Degrad Stab 76:329–340

    CAS  Google Scholar 

  87. Gugumus F (2002) Re-examination of the thermal oxidation reactions of polymers 3. Various reactions in Polyethylene and Polypropylene. Polym Degrad Stab 77:147–155

    CAS  Google Scholar 

  88. Zweifel H, Maier RD, Schiller M (2009) Plastics additives handbook. Carl Hanser Verlag, Munich

    Google Scholar 

  89. Tolinski M (2015) Additives for polyolefins. William Andrew (Elsevier), Oxford

    Google Scholar 

  90. Winter HH (1977) Viscous dissipation in shear flows of molten polymers. Adv Heat Transf 13:205–267

    CAS  Google Scholar 

  91. Rauwendaal C (2014) Polymer Extrusion. Carl Hanser Verlag, Munich

    Google Scholar 

  92. Sir Stokes GG (1880–1905) On the effect of the internal friction of fluids on the motion of pendulums. Read december 9, 1850. From the Transactions of the Cambridge Philosophical Society, vol. IX. p. 8. Reprinted in Mathematical and Physical Papers, Sir George Gabriel Stokes and Sir J. Larmor, vol. 3

  93. Valera TS, Demarquette NR, Toffoli SM (2004) Effect of filling factor on the determination of shear rate and viscosity from batch mixer. J Polym Eng 24(4):409–433

    CAS  Google Scholar 

  94. Cheremisinoff NP (1993) An introduction to polymer rheology and processing. Taylor & Francis, Boca Raton

    Google Scholar 

  95. Timóteo GAV, Fechine GJM, Rabello MS (2008) Stress cracking and photodegradation behavior of polycarbonate. The combination of two major causes of polymer failure. Polym Eng Sci. https://doi.org/10.1002/pen.21067

    Article  Google Scholar 

  96. Sperling LH (2006) Introduction to physical polymer science. Wiley, Hoboken

    Google Scholar 

  97. Yaday LDS (2005) Organic spectroscopy. Springer, Dordrecht

    Google Scholar 

  98. Sun K, Chen J, Zhao H, Sun W, Chen Y, Luo Z (2019) Dynamic thermomechanical analysis on water tree resistance of crosslinked polyethylene. Materials 12(746):1–11

    Google Scholar 

  99. Reinitz SD, Carlson EM, Levine RAC, Franklin KJ, Van Citters DW (2015) Dynamical mechanical analysis as an assay of cross-link density of orthopaedic ultra high molecular weight polyethylene. Polym Test 45:174–178

    CAS  Google Scholar 

  100. Cardoso ECL, Scagliusi SR, Parra DF, Lugão AB (2013) Gamma-irradiated cross-linked LDPE foams: characteristics and properties. Radiat Phys Chem 84:170–175

    CAS  Google Scholar 

  101. Morrison RT, Boyd RN (2002) Organic chemistry. Asoke K. Ghosh, Prentice-Hall of India Private Limited, New Delhi

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge Centro Universitário FEI and Universidade Federal de São Carlos for the support and infrastructure offered for the accomplishment of this study.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baltus C. Bonse.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (TIF 178 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babetto, A.S., Antunes, M.C., Bettini, S.H.P. et al. A Recycling-Focused Assessment of the Oxidative Thermomechanical Degradation of HDPE Melt Containing Pro-oxidant. J Polym Environ 28, 699–712 (2020). https://doi.org/10.1007/s10924-019-01641-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01641-6

Keywords

Navigation