Skip to main content
Log in

Degradation of Post-consumer PLA: Hydrolysis of Polymeric Matrix and Oligomers Stabilization in Aqueous Phase

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Degradation of post-consumer PLA to lactic acid was analysed in order to assess the economic feasibility of the PLA chemical recycling process. Hydrolysis of PLA, in batch reactor, was analysed in the temperature range of 443–473 K, under autogenous pressure and a constant PLA to water ratio (equal to approximately 0.11 by weight), without the use of a catalyst. The experimental results suggest that the complete degradation of PLA can be obtained using relatively low reaction-times with the production of a mixture containing the monomer and traces of the dimer of lactic acid. The overall process was modelled using a two-step process: bulk degradation of PLA (in the solid or molten phase) with the solubilisation of low molecular weight oligomers, and their subsequent hydrolysis in water (stabilization). The model describes the trend of oligomer concentrations in the aqueous phase and PLA conversion as a function of time with both high accuracy and agreement with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Holten C (1971) Lactic acid—properties and chemistry of lactic acid and derivatives. VerlagChemie, Weinheim

    Google Scholar 

  2. Crank M, Patel M, Marscheider-Weidemann F, Schleich J, Hüsing B, Angerer G (2005) Techno-economic feasibility of large-scale production of bio-based polymers in Europe. Institute for Prospective Technological Studies, Technical Report Series

  3. Chen G, Kim H, Kim E, Yoon J (2006) Synthesis of high-molecular-weight poly(L-lactic acid) through the direct condensation polymerization of L-lactic acid in bulk state. Eur Polym J 42:468–472

    Article  CAS  Google Scholar 

  4. Gruber P, Hall E, Kolstad J, Iwen M, Benson R, Borchardt R (1992) Patent No. US Patent 5142023

  5. Piemonte V, Gironi F (2013) Lactic acid production by hydrolysis of poly(L-lactic acid) in the solid state in aqueous solutions: an experimental and kinetic study. J Polym Environ 21:275–279

    Article  CAS  Google Scholar 

  6. Piemonte V, Gironi F (2013) Kinetics of hydrolytic degradation of PLA. J Polym Environ 21(2):313–318

    Article  CAS  Google Scholar 

  7. Piemonte V, Sabatini S, Gironi F (2013) Chemical recycling of PLA: a great opportunity towards the sustainable development? J Polym Environ 21(3):640–647

    Article  CAS  Google Scholar 

  8. Gironi F, Frattari S, Piemonte V, Chemical Recycling PLA (2016) Process optimization: PLA solubilization in organic solvents. J Polym Environ 24:328–333

    Article  CAS  Google Scholar 

  9. Davies S, Kolstad J, Vink E (2010) The eco-profile for current Ingeo polylactide production. Ind Biotechnol 6:212–224

    Article  Google Scholar 

  10. Brake L (1993) Patent No. US Patent 5264614

  11. Brake L, Subramanian N (1993) Patent No. US Patent 5229528

  12. Coszach P, Bogaert J, Willocq J (2010) Patent No. WO Patent 118954

  13. Xiuyan S, Hui W, Xuequn Y, Fusheng L, Shitao Y, Shiwei L (2014) Hydrolysis of poly(lactic acid) into calcium lactate using ionic liquid [Bmim][OAc] for chemical recycling. Polym Degrad Stab 110:65–70

    Article  Google Scholar 

  14. Plichta A, Lisowska P, Kundys A, Zychewicz A, Debowski M, Florjanczyk Z (2014) Chemical recycling of poly(lactic acid) via controlled degradation with protic(macro)molecules. Polym Degrad Stab 108:288–296

    Article  CAS  Google Scholar 

  15. Tsuji H, Daimon H, Fujie K (2003) New strategy for recycling and preparation of poly(L-lactic acid): hydrolysis in the melt. Biomacromolecules 4:835–840

    Article  CAS  Google Scholar 

  16. Mohd-Adnan A, Nishida A, Shirai Y (2008) Evaluation of kinetics parameters for poly(L-lactic acid) hydrolysis under high-pressure steam. Polym Degrad Stab 93:1053–1058

    Article  CAS  Google Scholar 

  17. Tsuji H, Saekia T, Tsukegia T, Daimona H, Fujie K (2008) Comparative study on hydrolytic degradation and monomer recovery of poly(L-lactic acid) in the solid and in the melt. Polym Degrad Stab 93:1956–1963

    Article  CAS  Google Scholar 

  18. Proikakis C, Mamouzelos N, Tarantili P, Andreopoulos A (2006) Swelling and hydrolytic degradation of poly(D,L-lactic acid) in aqueous solutions. Polym Degrad Stab 91:614–619

    Article  CAS  Google Scholar 

  19. Lee S, Kim H, Han Y, Kim Y (2001) Synthesis and degradation of end-group functionalized polylactide. J Polym Sci A 39:973–985

    Article  CAS  Google Scholar 

  20. Yagihashi M, Funazukuri T (2010) Recovery of L-lactic acid from poly(L-lactic acid) under hydrothermal conditions of dilute aqueous sodium hydroxide solution. Ind Eng Chem Res 49:1247–1251

    Article  CAS  Google Scholar 

  21. Tisserat B, Finkenstadt V (2011) Degradation of poly(L-lactic acid) and biocomposites by alkaline medium under various temperatures. J Polym Environ 19:766–775

    Article  CAS  Google Scholar 

  22. Henton D, Gruber P, Lunt J, Randall J (2005) Polylactic acid technology. Natural fibers, biopolymers, and biocomposites. CRC Press, Boca Raton

    Google Scholar 

  23. Gopferich A (1996) Mechanisms of polymer degradation and erosion. Biomaterials 17:103–114

    Article  CAS  Google Scholar 

  24. Gopferich A (1997) Polymer bulk erosion. Macromolecules 30:2598–2604

    Article  Google Scholar 

  25. Burkersrodaa F, Schedlb L, Göpferich A (2002) Why degradable polymers undergo surface or bulk erosion. Biomaterials 23:4221–4231

    Article  Google Scholar 

  26. Codari F, Lazzari S, Soos M, Storti G, Morbidelli M, Moscatelli D (2012) Kinetics of the hydrolytic degradation of poly(lactic acid). Polym Degrad Stab 97:2460–2466

    Article  CAS  Google Scholar 

  27. Frattari S, Gironi F, Sabia R, Villani C (2016) Equilibrium condition and stabilization kinetics of lactic acid oligomers in aqueous solutions. Can J Chem Eng. https://doi.org/10.1002/cjce.22737

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Claudio Capparucci who helped perform the experimental runs and the students who performed some experimental runs during their master thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piemonte Vincenzo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cristina, A.M., Sara, F., Fausto, G. et al. Degradation of Post-consumer PLA: Hydrolysis of Polymeric Matrix and Oligomers Stabilization in Aqueous Phase. J Polym Environ 26, 4396–4404 (2018). https://doi.org/10.1007/s10924-018-1312-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-018-1312-6

Keywords