Skip to main content

Advertisement

Log in

Biodegradable Polymer Composites as Coating Materials for Granular Fertilizers

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The composites consisting of poly(vinyl alcohol), horn meal, rapeseed cake, glycerol and phosphogypsum were proposed for the encapsulation of mineral fertilizers. Poly(vinyl alcohol) was used as a binder. The other components making ca. 70% of the mass of the composites were waste materials or by-products. They contain phosphorus, nitrogen, calcium, potassium and sulphur, which are useful nutrients for plants. The effect of the amount of glycerol and of the composition of the mixture of the fillers on the mechanical, sorption properties, water vapour permeability, solubility in water, dimensional stability of the composite films was studied. The addition of phosphogypsum and increase of the concentration of glycerol in the composites lead to the decrease of the tensile strength, water vapour permeability and to the increase of elongation at break and of the solubility of the composite films in water. The composites prepared were used for encapsulation of fertilizers. It was established that encapsulation resulted in the increase of the time of release of the fertilizers. In addition, encapsulation improved mechanical properties of the fertilizers. The fertilizer granules were coated with composite films and tested in the cultivation of tomato sprouts. They showed considerable positive effect on the development of the roots of the plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Savci S (2012) Int J Environ Sci Dev 3:77–80

    CAS  Google Scholar 

  2. Trenkel ME (2010) Slow- and controlled-release and stabilized fertilizers: an option for enhancing nutrient use efficiency in agriculture. IFA 160, Paris

    Google Scholar 

  3. Tomaszewska M, Jarosiewicz A, Karakulski K (2002) Desalination 146:319–323

    Article  CAS  Google Scholar 

  4. Taran YuA, Pynkova TI, Taran AL (2012) Theor Found Chem Eng 48:524–553

    Google Scholar 

  5. Roshanravan B, Soltani SM, Mahdavi F, Rashid SA, Yusop MK (2015) Chem Speciat Bioavailab 26:249–256

    Article  Google Scholar 

  6. Zhang M, Gao B, Chen J, Li Y, Creamer AE, Chen H (2014) Chem Eng J 255:107–113

    Article  CAS  Google Scholar 

  7. Lum YH, Shaaban A, Dimin MF, Mohamad N, Hamid N, Se SM (2013) J Polym Environ 21:1083–1087

    Article  CAS  Google Scholar 

  8. Rashidzadeh A, Olad A (2014) Carbohydr Polym 114:269–278

    Article  CAS  Google Scholar 

  9. Zou H, Ling Y, Dang X, Yu N, Zhang Y, Zhang Y, Dong J (2015) Int J Photoenergy 2015:1–6

    Article  Google Scholar 

  10. Rashidzadeh A, Olad A, Reyhanitabar A (2015) Polym Bull 72:2667–2684

    Article  CAS  Google Scholar 

  11. Jacobs DF (2005) USDA Forest Service Proceedings RMRS-P-35:113–118

  12. Azeem B, KuShaari K, Man ZB, Basit A, Thanh TH (2014) J Control Release 181:11–21

    Article  CAS  Google Scholar 

  13. Meiczinger M, Marton GY (2010) Hung J Ind Chem Veszprem 38:175–179

    CAS  Google Scholar 

  14. Devassine M, Henry F, Guerin P, Briand X (2002) Int J Pharm 242:399–404

    Article  CAS  Google Scholar 

  15. Yang Y, Tong Z, Geng Y, Li Y, Zhang M (2013) J Agric Food Chem 61:8166–8174

    Article  CAS  Google Scholar 

  16. Ramaraj B, Poomalai P (2006) J Appl Polym Sci 102:3862–3867

    Article  CAS  Google Scholar 

  17. Elizondo NJ, Sobral PJA, Menegalli FC (2009) Carbohydr Polym 75:592–598

    Article  CAS  Google Scholar 

  18. Wu C-S (2012) Polym Degrad Stab 97:2388–2395

    Article  CAS  Google Scholar 

  19. Babu RP, O‘Connor K, Seeram R (2013) Prog Biomater 2:1–16

    Article  Google Scholar 

  20. Yeng CM, Husseinsyah S, Ting SS (2013) Polym Plast Technol Eng 52:1496–1502

    Article  CAS  Google Scholar 

  21. Baek B-S, Park J-W, Lee B-H, Kim H-J (2013) J Polym Environ 21:702–709

    Article  CAS  Google Scholar 

  22. Zulhaimi NZ, KuShaari K, Man Z (2011) World Acad Sci Eng Technol 58:395–399

    Google Scholar 

  23. Trinh TH, Shaari K, Zilati K, Basit A, Azeem B (2014) Int J Chem Eng Appl 5:58–63

    CAS  Google Scholar 

  24. Stoven AA, Mathers HM, Struge DK (2006) HortSci 41:1206–1212

    CAS  Google Scholar 

  25. Sadique Shaikh MD, Patil MA (2013) IJLPR 3:L1–5

    Google Scholar 

  26. McKittrick J, Chen P-Y, Bodde SG, Yang W, Novitskaya EE, Meyers MA (2012) JOM 64:449–468

    Article  Google Scholar 

  27. Korniłłowicz-Kowalska T, Bohacz J (2011) Waste Manage 31:1689–1701

    Article  Google Scholar 

  28. Vieira MGA, Silva MA, dos Santos LO, Beppu MM (2011) Eur Polym J 47:254–263

    Article  CAS  Google Scholar 

  29. Bilck AP, Müller CMO, Olivato JB, Mali S, Grossmann MVE, Yamashita F (2015) Polímeros 25:331–335

    Article  Google Scholar 

  30. Wang S, Ren J, Kong W, Gao C, Liu C, Peng F, Sun R (2014) Cellul 21:495–505

    Article  Google Scholar 

  31. Saurabh CK, Gupta S, Variyar PS, Sharma A (2016) Ind Crops Prod 89:109–118

    Article  CAS  Google Scholar 

  32. Chiellini E, Cinelli P, Imam SH, Mao L (2001) Biomacromol 2:1029–1037

    Article  CAS  Google Scholar 

  33. Yu J-H, Wang J-L, Wu X, Zhu P-X (2008) Starch 60:257–262

    Article  CAS  Google Scholar 

  34. De Campos A, Tonoli GHD, Marconcini JM, Mattoso LHC, Klamczynski A, Gregorski KS, Wood D, Williams T, Chiou BS, Imam SH (2013) J Polym Environ 21:1–7

    Article  CAS  Google Scholar 

  35. Ramos ÓL, Reinas I, Silva SI, Fernandes JC, Cerqueira MA, Pereira RN, Vicente AA, Poças MF, Pintado ME, Malcata FX (2013) Food Hydrocolloids 30:110–122

    Article  CAS  Google Scholar 

  36. Su J-F, Wang S-B, Lu X-Z, Zhang L-D, Zhang Y-Y (2010) In: Proceedings of the 17th IAPRI World conference on Packaging. China, October 12–15, Scientific Research Publishing, USA, pp 444–448

  37. He Y, Wu Z, Tu L, Han Y, Zhang G, Li C (2015) Appl Clay Sci 109–110:68–75

    Article  Google Scholar 

  38. Julkapli NM, Akil HM (2010) Polym Plast Technol Eng 49:944–951

    Article  CAS  Google Scholar 

  39. Żywociński K, Gozdecka G, Korpal W (2011) Chemik 65:347–352

    Google Scholar 

  40. Mondini C, Sinicco T, Cayuela ML (2010) 19th World Congress of Soil Science, Soil Solutions for a Changing World 156–159

  41. Santibáñez C, Varnero MT (2014) J Soil Sci Plant Nutr 14:129–138

    Google Scholar 

Download references

Acknowledgements

Financial support of this research by the Research Council of Lithuania (project No MIP-066/2015) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Violeta Grazuleviciene.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Treinyte, J., Grazuleviciene, V., Paleckiene, R. et al. Biodegradable Polymer Composites as Coating Materials for Granular Fertilizers. J Polym Environ 26, 543–554 (2018). https://doi.org/10.1007/s10924-017-0973-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-0973-x

Keywords

Navigation