Skip to main content
Log in

Photocatalytic Degradation of the Nanocomposite Film Comprising Polyvinyl Chloride (PVC) and Sonochemically Synthesized Iron-Doped Zinc Oxide: A Comparative Study of Performances Between Sunlight and UV Radiation

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Photocatalytic degradation of a composite film made of PVC and Fe-doped ZnO nanoparticles under both UV and sunlight have been accomplished and compared. The metal-doped semiconductor nanoparticles were previously synthesized using ultrasound. The nanoparticles had average crystal size of 33.67 nm and a bandgap of 2.69 eV. Catalysts loading were varied. Composite film with 0.033 g Fe-ZnO per g PVC was found to be the optimum with respect to degradation and mechanical properties. Degradation was monitored by loss in weight. Under sunlight 12% degradation could be achieved with the composite film in 210 min whereas under UV light the degradation was 10%. For pure PVC film, the corresponding degradations were 4.2 and 4.84% respectively. A plausible mechanism has been suggested and validated with experimental results which fitted the proposed model satisfactorily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hanemann T, Szabó DV (2010) Materials 3:3468

    Article  CAS  Google Scholar 

  2. Thomas RT, Nair V, Sandhyarani N (2013) Coll Surf A 422:1

    Article  CAS  Google Scholar 

  3. Dridi F, Marrakchi M, Gargouri M, Garcia-Cruz A, Dzyadevych S, Vocanson F, Saulnier J, Jaffrezic-Renault N, Lagarde F (2015) Sens Actua B 221:480

    Article  CAS  Google Scholar 

  4. Ahmad M, Ahmed E, Hong ZL, Jiao XL, Abbas T, Khalid NR (2013) Appl Surf Sci 285P:702

    Article  Google Scholar 

  5. Fu M, Li Y, Wu S, Lu P, Liu J, Dong F (2011) Appl Surf Sci 258:1587

    Article  CAS  Google Scholar 

  6. Akhavan O (2009) J. Coll Interf Sci 336:117

    Article  CAS  Google Scholar 

  7. Akhavan O, Ghaderi E (2009) J Phys Chem C 113:20214

    Article  CAS  Google Scholar 

  8. Cho S, Choi W (2001) J Photochem Photobiol A 143:221

    Article  CAS  Google Scholar 

  9. Shang J, Chai M, Zhu Y (2003) Environ Sci Technol 37:4494

    Article  CAS  Google Scholar 

  10. Zan L, Tian L, Liu Z, Peng Z (2004) Appl Catal A 264:237

    Article  CAS  Google Scholar 

  11. Zhang K, Cao W, Zhang J (2004) Appl Catal A 276:67

    Article  CAS  Google Scholar 

  12. Fa W, Zan L, Gong C, Zhong J, Deng K (2008) Appl Catal B 79:216

    Article  CAS  Google Scholar 

  13. Chakrabarti S, Dutta BK (2008) Int J Environ Technol Manage 9:34

    Article  CAS  Google Scholar 

  14. Chakrabarti S, Chaudhuri B, Bhattacharjee S, Das P, Dutta BK (2008) J Hazard Mater 154:230

    Article  CAS  Google Scholar 

  15. Sil D, Chakrabarti S (2010) Sol Energy 84:476

    Article  CAS  Google Scholar 

  16. Chakrabarti S, Bhattacharjee S, Sil D, Chaudhuri B (2010) ISSN: 0974—7443, Chemical Technology: An Indian Journal, 6 (2010) 58

  17. Zhao X, Li Z, Chen Y, Shi L, Zhu Y (2007) J Mol Catal A Chem 269:101

    Article  Google Scholar 

  18. An Y, Hou J, Liu Z, Peng B (2014) Mater Chem Phys 148:387

    Article  CAS  Google Scholar 

  19. Patterson AL (1939) Phys Rev 56:978

    Article  CAS  Google Scholar 

  20. Thimijan RW, Heins RD (1983) HortScience 18:818

    Google Scholar 

  21. Ziegler E, Heinrich A, Oppermann H, Stover G (1981) Phys Status Sol A 66:635

    Article  CAS  Google Scholar 

  22. Ramesh A, Leen KH, Kumutha K, Arof AK (2007) Spectrochim Acta Part A 66:1237

    Article  CAS  Google Scholar 

  23. da Silva MA, Vieira MGA, Maçumoto ACG, Beppu MM (2011) Polym Test 30:478

    Article  Google Scholar 

  24. Hoffmann MR, Martin ST, Choi W, Bahenemann DW (1995) Chem Rev 95:69

    Article  CAS  Google Scholar 

  25. Turchi CS, Ollis DF (1990) J Catal 122:178

    Article  CAS  Google Scholar 

  26. Gómez-Sánchez E, Simon S, Koch L, Wiedmann A, Weber T, Mengel M (2011) e-Preservation Sci 8, 2–9, ISSN: 1581-9280 web edition ISSN: 1854-3928 print edition

  27. http://www.materialconcepts.com/products/poly-bags/flat/, Accessed 30 Dec 2015

  28. Horikoshi S, Serpone N, Hisamatsu Y, Hidaka H (1998) Environ Sci Technol 32:4010

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are grateful to the Department of Science and Technology, Government of India and TEQIP, phase-II, University of Calcutta for providing stipends to PD and AR. Authors are also grateful to Prof. Saikat Maitra (Principal, Government College of Enginering and Ceramic Technology) for clarifying material science issues; Prof. S. K. Ray (HOD, Dept. of Polymer Science and Technology, University of Calcutta) for FTIR; Prof. D. Chattopadhyay (Dept. of Polymer Science and Technology, University of Calcutta) for XRD; Mr. P. Banerjee (WBPCB) for his advice regarding nano-particle synthesis and characterization; CRNN for FESEM, SEM and EDAX and Mr. A. K. Bhattacharya (M. Tech., Chemical Engg.) for helping in the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sampa Chakrabarti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, P., Roy, A. & Chakrabarti, S. Photocatalytic Degradation of the Nanocomposite Film Comprising Polyvinyl Chloride (PVC) and Sonochemically Synthesized Iron-Doped Zinc Oxide: A Comparative Study of Performances Between Sunlight and UV Radiation. J Polym Environ 25, 1231–1241 (2017). https://doi.org/10.1007/s10924-016-0894-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0894-0

Keywords

Navigation