Skip to main content
Log in

Structural Analysis of ZnO Nanoparticles Reinforced P(3HB-co-15 mol% 3HHx) Bioplastic Composite

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Bioplastics are gaining interest due to their biodegradable and biocompatible nature which can be used as a replacement for petroleum based plastics. Poly (3-hydroxybutyrate-co-15 mol% 3-hydroxyhexanoate) [P(3HB-co-15 mol% 3HHx)]/ZnO nanoparticles (NPs) blended bioplastic films were fabricated by solution casting method using chloroform as solvent. The structural characteristics such as peak intensity analysis, crystallite size, dislocation density, and texture coefficient of ZnO NPs mixed P(3HB-co-15 mol% 3HHx) samples were studied using X-Ray Diffraction (XRD) and Fourier Transform Infra-Red (FTIR) analyses. It is clear from the XRD analyses that the crystallinity of P(3HB-co-15 mol% 3HHx) was decreased considerably as ZnO NPs concentration increased. The crystallite size of P(3HB-co-15 mol% 3HHx) was decreased with an increase in ZnO NPs concentration and observed within 150 nm and the dislocation density was decreased with respect to the orientation of P(3HB-co-15 mol% 3HHx) crystals. Simultaneously, the structural properties of ZnO NPs in P(3HB-co-15 mol% 3HHx) matrix were affected noticeably with respect to the ZnO NPs and copolymer concentrations. The characteristic peak positions from FTIR spectra of P(3HB-co-15 mol% 3HHx) copolymer shifted towards higher frequency and evidenced the existence of structural defects. Overall, it was found from both XRD and FTIR analyses that the presence of ZnO NPs affected the crystallinity of P(3HB-co-15 mol% 3HHx) copolymer due to the formation of intermolecular bonds, which restricted the preferential orientation of P(3HB-co-15 mol% 3HHx) molecules which was observed from the texture coefficient analyses. Based on these observations, ZnO NPs at low concentrations can be used with P(3HB-co-15 mol% 3HHx) copolymer effectively and the resulting composite may be used for packaging application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sanchez-Garcia MD, Gimenez E, Lagaron JM (2008) Carbohydr Polym 71(2):235–244

    Article  CAS  Google Scholar 

  2. Flechter A (1993) Plastics from bacteria and for bacteria: PHA as natural, biodegradable polyesters. Springer, New York

    Google Scholar 

  3. Abdelwahab MA, Flynn A, Chiou B-S, Imam S, Orts W, Chiellini E (2012) Polym Degrad Stab 97:1822

    Article  CAS  Google Scholar 

  4. Avella M, De Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG (2005) Food Chem 93:467

    Article  CAS  Google Scholar 

  5. Khanna S, Srivastava AK (2005) Process Biochem 40:607

    Article  CAS  Google Scholar 

  6. Steinbüchel A, Valentin HE (1995) FEMS Microbiol Lett 128(3):219–228

    Article  Google Scholar 

  7. Galego N, Rozsa C, Sanchez R, Fung J, Vázquez A, Santo Tomas J (2000) Polym Test 19:485

    Article  CAS  Google Scholar 

  8. Steinbüchel A, Füchtenbusch B (1998) Trends Biotechnol 16:419

    Article  Google Scholar 

  9. Wu CS (2006) J Appl Polym Sci 102:3565

    Article  CAS  Google Scholar 

  10. Jain R, Kosta S, Tiwari A (2010) Chron Young Sci 1:10

    CAS  Google Scholar 

  11. Keenan TM, Tanenbaum SW, Stipanovic AJ, Nakas JP (2004) Biotechnol Prog 20(6):1697–1704

    Article  CAS  Google Scholar 

  12. Kahar P, Tsuge T, Taguchi K, Doi Y (2004) Polym Degrad Stab 83:79

    Article  CAS  Google Scholar 

  13. Sudesh K, Abe H, Doi Y (2000) Prog Polym Sci 25:1503

    Article  CAS  Google Scholar 

  14. Xu C, Qiu Z (2011) Polym Adv Technol 22:538

    Article  CAS  Google Scholar 

  15. Sadat-Shojai M, Khorasani M-T, Jamshidi A, Irani S (2013) Mater Sci Eng C 33:2776

    Article  CAS  Google Scholar 

  16. Bitinis N, Hernández M, Verdejo R, Kenny JM, Lopez-Manchado MA (2011) Adv Mater 23(44):5229–5236

    Article  CAS  Google Scholar 

  17. Vaseem M, Umar A, Hahn Y.-B (2010) (American Scientific Publishers, New York), p 1

  18. Díez-Pascual AM, Díez-Vicente AL (2014) Int J Mole Sci 15:10950

    Article  Google Scholar 

  19. Yu W, Lan C-H, Wang S-J, Fang P-F, Sun Y-M (2010) Polymer 51:2403

    Article  CAS  Google Scholar 

  20. Ye HM, Wang Z, Wang HH, Chen GQ, Xu J (2010) Polymer 51(25):6037–6046

    Article  CAS  Google Scholar 

  21. Oliveira FC, Dias ML, Castilho LR, Freire DM (2007) Bioresour Technol 98:633

    Article  CAS  Google Scholar 

  22. Devi AB, Nachiyar CV, Kaviyarasi T, Samrot AV (2015) Int J Pharm Pharm Sci 7(3):140–144

  23. Liau CP, Bin Ahmad M, Shameli K, Yunus WMZW, Ibrahim NA, Zainuddin N, Then YY (2014) Sci World J 2014:1–9. doi:10.1155/2014/572726

  24. Nair AM, Annamalai K, Kannan SK, Kuppusamy S (2014) Malaya J Biosci 1:8

    CAS  Google Scholar 

  25. Thire RMDSM, Arruda LC, Barreto LS (2011) Mater Res 14:340

    Article  CAS  Google Scholar 

  26. Rithin Kumar N, Crasta V, Bhajantri RF, Praveen B (2014) J Polym 2014

  27. Makinson J, Lee J, Magner S, De Angelis R, Weins W, Hieronymus A (2000) Adv X-Ray Anal 42:407

    CAS  Google Scholar 

  28. Guo W, Duan J, Geng W, Feng J, Wang S, Song C (2013) Microbiol Res 168:231

    Article  CAS  Google Scholar 

  29. El-Kader FA, Hakeem N, Elashmawi I, Ismail A (2013) Aust J Basic Appl Sci 7:608

    Google Scholar 

  30. Venkateswarlu K, Sandhyarani M, Nellaippan T, Rameshbabu N (2014) Proced Mate Sci 5:212

    Article  CAS  Google Scholar 

  31. Márquez JAR, Rodríguez CMB, Herrera CM, Rosas ER, Angel OZ, Pozos OT (2011) Int J Electrochem Sci 6:4059

    Google Scholar 

  32. Sundaramoorthy P, Giri Dev V, Renuka Devi M (2012) Indian J Fibre Text Res 37:16

    CAS  Google Scholar 

  33. Bloembergen S, Holden DA, Hamer GK, Bluhm TL, Marchessault RH (1986) Macromolecules 19:2865

    Article  CAS  Google Scholar 

  34. Shamala T, Divyashree M, Davis R, Kumari KL, Vijayendra S, Raj B (2009) Indian J Microbiol 49:251

    Article  CAS  Google Scholar 

  35. Preethi R, Sasikala P, Aravind J (2012) Res Biotechnol 3:61

    Google Scholar 

  36. Tian G, Wu Q, Sun S, Noda I, Chen GQ (2002) J Polym Sci Part B Polym Phys 40:649

    Article  CAS  Google Scholar 

  37. Farago PV, Raffin RP, Pohlmann AR, Guterres SS, Zawadzki SF (2008) J Braz Chem Soc 19:1298

    Article  CAS  Google Scholar 

  38. Chen B, Sun X, Xu C, Tay B (2004) Phys E Low Dimens Syst Nanostruct 21:103

    Article  CAS  Google Scholar 

  39. Ismail HM (1991) J Anal Appl Pyrol 21:315

    Article  CAS  Google Scholar 

  40. He Y, Wang X, Jin P, Zhao B, Fan X (2009) Spectrochim Acta Part A Mol Biomol Spectrosc 72:876

    Article  CAS  Google Scholar 

  41. Viswanatha R, Venkatesh T, Vidyasagar C, Nayaka YA, Arch Y (2012) Arch Appl Sci Res 4:480

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Long Term Research Grant Scheme (LRGS) from Ministry of Education. Vishnu Chandar Janakiraman and Murugan Paramasivam express their gratitude to USM Fellowship for financial support. We thank Dr. Hideki Abe from RIKEN, Japan for his valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Shanmugan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vishnu Chandar, J., Shanmugan, S., Murugan, P. et al. Structural Analysis of ZnO Nanoparticles Reinforced P(3HB-co-15 mol% 3HHx) Bioplastic Composite. J Polym Environ 25, 1251–1261 (2017). https://doi.org/10.1007/s10924-016-0893-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0893-1

Keywords

Navigation