Skip to main content

Advertisement

Log in

Comparative Sustainability Assessment of Starch Nanocrystals

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Fossil energy depletion and growing environmental concerns have brought up increasing interest in bio-based eco-efficient and high technology materials. Among them, starch nanocrystals (SNC) consist of crystalline nano-platelets produced from the hydrolysis of starch and mainly used as nano-fillers in polymeric matrix. New applications have brought up the need for scaling-up the SNC preparation process. However, for this new bio-based nano-material to be sustainable, its preparation and processing should have limited impacts on the environment. Thus, together with analyzing and making recommendations for the scaling-up of SNC production process, it is worth identifying “environmentally sensitive” steps using life cycle analysis (LCA). To that purpose, different scenarios have been proposed and compared according to different environmental impacts. Also, a comparison to its main competitor, i.e. organically modified nanoclay (OMMT), is proposed. From a LCA point of view, SNC preparation requires less energy than OMMT extraction, but global warming and acidification indicators were higher than for OMMT. However, SNC have the added advantages to be renewable and biodegradable contrary to OMMT which contribute to non-renewable energy and mineral depletion. Thus, used as filler, SNC have a positive impact on the end of life of the filled material. From these observations, recommendations for the scaling-up of the SNC preparation process are made and deal mainly with the use of land and water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Geraci CL (2011) 2011 TAPPI Intl Conf Nano Renew Mater

  2. Habibi Y, Lucia L, Rojas O (2010) Chem Rev 110(6):3479–3500

    Google Scholar 

  3. Paillet M, Dufresne A (2001) Macromolecules 34(19):6527–6530

    Article  CAS  Google Scholar 

  4. Gopalan Nair K, Dufresne A (2003) Biomacromolecules 4(3):666–674

    Article  Google Scholar 

  5. Morin A, Dufresne A (2002) Macromolecules 35(6):2190–2199

    Article  CAS  Google Scholar 

  6. Le Corre D, Bras J, Dufresne A (2010) Biomacromolecules 11(5):1139–1153

    Article  Google Scholar 

  7. Angellier H, Choisnard L, Molina-Boisseau S, Ozil P, Dufresne A (2004) Biomacromolecules 5:1545–1551

    Article  CAS  Google Scholar 

  8. Putaux JL, Molina-Boisseau S, Momaur T, Dufresne A (2003) Biomacromolecules 4(5):1198–1202

    Article  CAS  Google Scholar 

  9. Chen G, Wei M, Chen J, Huang J, Dufresne A, Chang PR (2008) Polymer 49(7):1860–1870

    Article  CAS  Google Scholar 

  10. Chen Y, Cao X, Chang PR, Huneault MA (2008) Carbohydr Polym 73(1):8–17

    Article  CAS  Google Scholar 

  11. Yu J, Ai F, Dufresne A, Gao S, Huang J, Chang PR (2008) Macromol Mater Eng 293(9):763–770

    Article  CAS  Google Scholar 

  12. Garcia NL, Ribba L, Dufresne A, Aranguren MI, Goyanes S (2009) Macromol Mater Eng 294(3):169–177

    Article  CAS  Google Scholar 

  13. Namazi H, Dadkhah A (2008) J Appl Polym Sci 110(4):2405–2412

    Article  CAS  Google Scholar 

  14. LeCorre D, Bras J, Dufresne A (2011) Macromol Mater Eng. doi:10.1002/mame.201100317

  15. Angellier H, Molina-Boisseau S, Lebrun L, Dufresne A (2005) Macromolecules 38(9):3783–3792

    Article  CAS  Google Scholar 

  16. Bras J, Hassan ML, Bruzesse C, Hassan EA, El-Wakil NA, Dufresne A (2010) Ind Crops Prod 32(3):627–633

    Article  CAS  Google Scholar 

  17. Kümmerer K, Menz J, Schubert T, Thielemans W (2011) Chemosphere 82(10):1387–1392

    Article  Google Scholar 

  18. Lin N, Huang J, Chang PR, Feng L, Yu J (2011) Coll Surf B Biointerf 85(2):270–279

    Article  CAS  Google Scholar 

  19. Zhang X, Huang J, Chang PR, Li J, Chen Y, Wang D, Yu J, Chen J (2010) Polymer 51(19):4398–4407

    Article  CAS  Google Scholar 

  20. Valodkar M, Thakore S (2011) Carbohydr Res 345(16):2354–2360

    Article  Google Scholar 

  21. Bruntland G (1987) Our common future. The world commission on environment and development. Oxford University Press, Oxford

    Google Scholar 

  22. Johansson C, Järnstrom L, Breen C (2010) WO/2010/077203

  23. ISO 14040 (1997) Environmental management—life cylce assessment—principles and framework. ISO 14040:1997(E)

  24. Goedkoop M, Oele M, Schrywer Ad, Vieira M (2008) SimaPro database manual—Methods library

  25. Actu Environnement (2003) Dictionnaire Encyclopedique—Definition de Acidification COGITERRA 16/07/2011

  26. Truhaut R (1977) Ecotoxicol Environ Saf 1(2):151–173

    Article  CAS  Google Scholar 

  27. Franklin Associates (2006) Chem Eng, 15 March 2006 (pers commun)

  28. Zuckerforschung Tulln (2009) Maize starch extraction http://www.zuckerforschung.at/inhalt_en.php?titel=STARCH%20TECHNOLOGY&nav=nstaerkeinfo_en&con=cigsmais_en

  29. Gold MV (2007) What is organic production? USDA Definition and Regulations USDA September 2011 http://www.nal.usda.gov/afsic/pubs/ofp/ofp.shtml

  30. USDA (2006) Organic Foods August 2011 http://usda-fda.com/articles/organic.htm

  31. Pimentel D, Hepperly P, Hanson J, Seidel R, Douds D (2005) Organic and conventional farming systems: environmental and economic issues

  32. DeBenedetti B, Camino G, Tabuani D, Maffia L, Santarén J, Aguilar E (2006) STRP European research program “NANOFIRE”, No. 505637, 6th Framework Program Comparison between eco-profiles of innovative nanoclay and traditional TBBPA flame retardants

  33. Hohenthal C, Veuro S, Kuisma M (2011) D6.6: sustainability assessment for renewable biopolymer based flexible packaging paper http://www.flexpakrenew.eu/documentation.cfm

  34. Hohenthal C, Veuro S (2011) FlexPakRenew workshop

  35. LeCorre D, Bras J, Dufresne A (2011) Carbohydr Polym 86(4):1565–1572

    Article  CAS  Google Scholar 

  36. LeCorre D, Bras J, Dufresne A (2011) Surf Coat Technol (submitted)

  37. Vilaplana F, Strömberg E, Karlsson S (2010) Polym Degrad Stab 95(11):2147–2161

    Article  CAS  Google Scholar 

  38. Fleischer T, Grunwald A (2008) J Clean Prod 16(8–9):889–898

    Article  Google Scholar 

  39. Lordan S, Kennedy J, Higginbotham C (2011) Appl Toxicol 31(1):27–35

    Article  CAS  Google Scholar 

  40. Kovacs T, Naish V, O’Connor B, Blaise C, Gagné F, Hall L, Trudeau V, Martel P (2010) Nanotoxicology 4(3):255–270

    Article  CAS  Google Scholar 

  41. Foster EJ, Clift MJD, Rothen-Rutishauser B, Weder C (2011) 2011 TAPPI Intl Conf Nano Renew Mater

  42. Villanova JCO, Ayres E, Carvalho SM, Patrício PS, Pereira FV, Oréfice RL (2011) Eur J Pharm Sci 42(4):406–415

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Bras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

LeCorre, D., Hohenthal, C., Dufresne, A. et al. Comparative Sustainability Assessment of Starch Nanocrystals. J Polym Environ 21, 71–80 (2013). https://doi.org/10.1007/s10924-012-0447-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-012-0447-0

Keywords

Navigation