Skip to main content
Log in

Accumulation of Polyhydroxyalkanoates by Rhizobacteria Underneath Nickel-Hyperaccumulators from Serpentine Ecosystem

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Nickel-resistant bacteria isolated from underneath Ni-hyperaccumulators growing on serpentine soils were screened for production of polyhydroxyalkanoates. These rhizobacteria accumulated poly-3-hydroxybutyric acid [P(3HB)] accounting 3.9–67.7% of cell dry weight during growth in gluconate and/or glucose. Cupriavidus pauculus KPS 201 utilized only gluconate and accumulated about 67.7% P(3HB) while, Bacillus firmus AND 408 utilized both carbon sources for polymer synthesis. The isolates being resistant to Ni also accumulated substantial amount of P(3HB) when grown in presence of the heavy metal and this was revealed by transmission electron microscopic studies. Although B. firmus AND 408 produced only P(3HB) at higher concentrations of gluconate, C. pauculus KPS 201 synthesized copolymer of 3-hydroxybutyric acid (3HB) and 3-hydroxyvaleric acid (3HV) [P(3HB-co-3HV)]. In presence of 0.8% gluconate and 4 mM Ni, KPS 201 cells produced PHA amounting 81% CDW, which contained 76 and 24 mol% 3HB and 3HV monomers, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brooks RR (1987) Serpentine and its vegetation, a multidisciplinary approach. Croom Helm, London

    Google Scholar 

  2. Schlegel HG, Cosson JP, Baker AJM (1991) Bot Acta 104:18–25

    CAS  Google Scholar 

  3. Idris R, Trivonova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Appl Environ Microbiol 70:2667–2677

    Article  CAS  Google Scholar 

  4. Pal A, Dutta S, Mukherjee PK, Paul AK (2005) J Basic Microbiol 45:207–218

    Article  CAS  Google Scholar 

  5. Mengoni A, Schat H, Vangronsveld J (2010) Plant Soil 331:5–16

    Article  CAS  Google Scholar 

  6. Anderson AJ, Dawes EA (1990) Microbiol Rev 54:450–472

    CAS  Google Scholar 

  7. Steinbuchel A (1991) In: Byrom D (ed) Biomaterials. MacMillan, Basingstoke, pp 123–213

    Google Scholar 

  8. Lee SY (1996) Biotechnol Bioeng 49:1–14

    Article  CAS  Google Scholar 

  9. Brandl H, Bachofen R, Mayer E, Wintermantel E (1995) Can J Microbiol 41:143–153

    Article  CAS  Google Scholar 

  10. Chen GQ (2005) In: Smith R (ed) Biodegradable polymers for industrial applications. CRC press, England, pp 32–56

    Chapter  Google Scholar 

  11. Sudesh K, Doi Y (2005) in: Handbook of biodegradable polymers, ed. C. Bastioli. Rapra Technologies Ltd., England, pp 219–256

    Google Scholar 

  12. Kadouri D, Jurkevitch E, Okon Y, Castro-Sowinski S (2005) Crit Rev Microbiol 31:55–67

    Article  CAS  Google Scholar 

  13. Ruiz JA, López NI, Méndez BS (2004) Curr Microbiol 48:396–400

    Article  CAS  Google Scholar 

  14. Ayub ND, Tribelli PM, Lopez NI (2009) Extremophiles 13:59–66

    Article  CAS  Google Scholar 

  15. Zhao YH, Li HM, Qin LF, Wang HH, Chen GQ (2007) FEMS Microbiol Lett 276:34–41

    Article  CAS  Google Scholar 

  16. Pavez P, Castillo JL, Gonzalez C, Martinez M (2009) Curr Microbiol 59:636–640

    Article  CAS  Google Scholar 

  17. Kamnev AA, Antonyuk LP, Tugarova AV, Tarantilis PA, Polissiou MG, Gardiner AHE (2007) J Mol Str 610:127–131

    Article  Google Scholar 

  18. Obruca S, Marova I, Svoboda Z, Mikulikova R (2010) Folia Microbiol 55:17–22

    Article  CAS  Google Scholar 

  19. Alford ER, Pilon-Smits EAH, Paschke MW (2010) Plant Soil 337:33–50

    Article  CAS  Google Scholar 

  20. Pal A, Wauters G, Paul AK (2007) Plant Soil 293:37–48

    Article  CAS  Google Scholar 

  21. Law JH, Slepecky RA (1961) J Bacteriol 82:33–36

    CAS  Google Scholar 

  22. Bartosch S, Wolgast I, Spieck E, Bock E (1999) Appl Environ Microbiol 65:4126–4133

    CAS  Google Scholar 

  23. Ramsay JA, Berger E, Voyer R, Chavarie C, Ramsay BA (1994) Biotechnol Tech 8:589–594

    Article  CAS  Google Scholar 

  24. Pal A, Choudhuri P, Dutta S, Mukherjee PK, Paul AK (2004) W J Microbiol Biotechnol 20:881–886

    Article  CAS  Google Scholar 

  25. Chen GQ, Konig KH, Lafferty RM (1991) FEMS Microbiol Lett 84:173–176

    CAS  Google Scholar 

  26. Aslim B, Yuksekdag ZN, Beyatli Y (2002) Turk Electron J Biotechnol 24–30

  27. Chien C, Hong C, Soo P, Wei Y, Chen S, Cheng M, Sun Y (2010) Appl Biochem Biotechnol 162:2355–2364

    Article  CAS  Google Scholar 

  28. Steinbuchel A, Pieper U (1992) Appl Microbiol Biotechnol 37:1–6

    Google Scholar 

Download references

Acknowledgments

We thank Prof. A. N. Patra, Department of Chemistry, University of Calcutta, Kolkata for NMR analysis of polymer samples. Financial support to A. Pal from German Academic Exchange Service (DAAD), Bonn, Germany and Department of Science and Technology (DST Fast Track Young Scientist, SR/FT/L-125/2005 dated 12.07.2006), New Delhi, India is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Paul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pal, A., Paul, A.K. Accumulation of Polyhydroxyalkanoates by Rhizobacteria Underneath Nickel-Hyperaccumulators from Serpentine Ecosystem. J Polym Environ 20, 10–16 (2012). https://doi.org/10.1007/s10924-011-0355-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-011-0355-8

Keywords

Navigation