Skip to main content

Advertisement

Log in

Comparative Biodegradation in Soil Behaviour of two Biodegradable Polymers Based on Renewable Resources

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This work presents the last phase of long-term experimental studies on the biodegradation in soil behaviour of polymers destined for agricultural applications. The paper focuses on comparative studies between the biodegradation in soil behaviour of two important biodegradable polymers based on renewable resources: poly(lactic acid) (PLA) versus polyhydroxyalkanoates (PHA). Full-scale experiments were carried out during the period June 2008–January 2009. Different methods of exposure were applied in the case of polyhydroxyalkanoates, simulating the agricultural biodegradable mulching films use and their fate in soil after the end of their useful lifetime. The field results were compared with the results of biodegradation under controlled laboratory conditions simulating biodegradation in soil, using soil from the experimental field. Further, the field results were compared against the results of biodegradation under farm composting conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. Messias de Bragança R, Fowler P (2004) Industrial markets for starch. The Biocomposites Center, University of Wales, Bangor, 3 June 2004

  2. Tokiwa Y, Calabia BP (2006) Biodegradability and biodegradation of poly(lactide). Appl Microbiol Biotechnol 72:244–251

    Article  CAS  Google Scholar 

  3. Kale G, Auras R, Singh SP, Narayan R (2007) Biodegradability of polylactide bottles in real and simulated composting conditions. Polym Test 26:1049–1061

    Article  CAS  Google Scholar 

  4. Rudnik E (2008) Compostable polymer materials. Elsevier, Oxford

    Google Scholar 

  5. Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–852

    Article  CAS  Google Scholar 

  6. Ishida K, Asakawa N, Inoue Y (2005) Structure, properties and biodegradation of some bacterial copoly(hydroxyalkanoate)s. Macromol Symp 224:47–58

    Article  CAS  Google Scholar 

  7. Suriyamongkol P, Weselake R, Narine S, Moloney M, Shah S (2007) Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants—a review. Biotechnol Adv 25:148–175

    Article  CAS  Google Scholar 

  8. Hazer B, Steinbüchel A (2007) Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications. Appl Microbiol Biotechnol 74:1–12

    Article  CAS  Google Scholar 

  9. Philip S, Keshavarz T, Roy Y (2007) Review. Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82:233–247

    Article  CAS  Google Scholar 

  10. Sridewi N, Bhubalan K, Sudesh K (2006) Degradation of commercially important polyhydroxyalkanoates in tropical mangrove ecosystem. Polym Degrad Stab 91:2931–2940

    Article  CAS  Google Scholar 

  11. Akmal D, Azizan MN, Majid MIA (2003) Biodegradation of microbial polyesters P(3HB) and P(3HB-co-3HV) under the tropical climate environment. Polym Degrad Stab 80:513–518

    Article  CAS  Google Scholar 

  12. Kim M, Lee AR, Yoon YS, Chin IJ (2007) Biodegradation of poly(3-hydroxybutyrate), Sky-Green and Mater-Bi by fungi isolated from soils. Eur Polym J 36:1677–1685

    Article  Google Scholar 

  13. Kapanen A, Schettini E, Vox G, Itαvaara M (2008) Performance and environmental impact of biodegradable films in agriculture: a field study on protected cultivation. J Polym Environ 16(2):109–122

    Article  CAS  Google Scholar 

  14. Briassoulis D (2007) Analysis of the mechanical and degradation performance of optimised agricultural biodegradable films. Polym Degrad Stab 92(6):1115–1132

    Article  CAS  Google Scholar 

  15. Martin-Closas L, Picuno P, Rodriguez D, Pelacho AM (2008) Properties of new biodegradable plastics for mulching, and characterization of its degradation in the laboratory and in the field. ISHS Acta Horticulturae 801: International Symposium on High Technology for Greenhouse System Management: Greensys2007, pp 275–282

  16. Gallet G, Lempiänen R, Karlsson S (2001) Characterisation by solid phase microextraction-gas chromatography-mass spectrometry of matrix changes of poly(L-lactide) exposed to outdoor soil environment. Polym Degrad Stab 71:147–151

    Article  CAS  Google Scholar 

  17. Shogren RHL, Doane WM, Garlotta D, Lawton JW, Wilett JL (2003) Biodegradation of starch/polylactic acid/poly(hydroxyester-ether) composite bars in soil. Polym Degrad Stab 79:405–411

    Article  CAS  Google Scholar 

  18. Rudnik E, Briassoulis D (2010) Long-term biodegradation behaviour of poly(lactic acid) in soil under real field conditions and laboratory simulations testing, submitted for publication

  19. Wissenschaftlich-technische Werkstatten GmbH. Weilheim, Germany. www.wtw.com

  20. Ahmed J, Varshney SK, Zhang JX, Ramaswamy H (2009) Effect of high pressure treatment on thermal properties of polylactides. J Food Eng 93:308–312

    Article  CAS  Google Scholar 

  21. Partini M, Pantani R (2007) Determination of crystallinity of an aliphatic polyester by FTIR spectroscopy. Polym Bull 59:403–412

    Article  CAS  Google Scholar 

  22. Xu J, Guo B, Yang R, Wu Q, Chen G, Zhang Z (2002) In situ FTIR study on melting and crystallization of polyhydroxyalkanoates. Polymer 43:6893–6899

    Article  CAS  Google Scholar 

  23. Tserki V, Matzinos P, Pavlidou E, Panayiotou C (2006) Biodegradable aliphatic polyesters. Part II. Synthesis and characterization of chain extended poly(butylene succinate-co-butylene adipate). Polym Degrad Stab 91:377–384

    Article  CAS  Google Scholar 

  24. Auras RA, Harte B, Selke S, Hernandez RJ (2003) Mechanical, physical, and barrier properties of poly(lactide) films. J Plast Film Sheeting 19:123–135

    Article  CAS  Google Scholar 

  25. Zuza E, Ugartemendia JM, Lopez A, Meaurio E, Lejardi A, Sarasua JR (2008) Glass transition behaviour and dynamics fragility in polylactides containing mobile and rigid amorphous fractions. Polymer 49:4427–4432

    Article  CAS  Google Scholar 

  26. Chen H, Pyda M, Cebe P (2009) Non-isothermal crystallization of PET/PLA blends. Thermochim Acta 492:61–66

    Article  CAS  Google Scholar 

  27. Agarwal M, Koelling KW, Chalmers JJ (1998) Characterization of the degradation of polylactic acid polymer in a solid environment. Biotechnol Prog 14:517–526

    Article  CAS  Google Scholar 

  28. Longieras A, Tanchette JB, Erre D, Braud Ch, Copinet A (2007) Compostability of poly(lactide): degradation in an inert solid medium. J Polym Environ 15:200–206

    Article  CAS  Google Scholar 

  29. Bikaris DN, Papageorgiou GZ, Achilias DS (2006) Synthesis and comparative biodegradability studies of three poly(alkylene succinate)s. Polym Degrad Stab 91:31–43

    Article  Google Scholar 

  30. Park ChH, Hong EY, Kang YK (2007) Effects of spinning speed and heat treatment on the mechanical properties and biodegradability of poly(lactic acid) fibres. J Appl Polym Sci 103:3099–3104

    Article  CAS  Google Scholar 

  31. AATCC 30-1993-Antifungal activity, assessment on textile materials: mildew and rot resistance of textile materials. American Association of Textile Chemists and Colorists

  32. Park ChH, Kang YK, Im SS (2004) Biodegradability of cellulose fabrics. J Appl Polym Sci 94:248–253

    Article  CAS  Google Scholar 

  33. Zhang X, Espiritu M, Bilyk A, Kurniawan L (2008) Morphological behaviour of poly(lactide acid) during hydrolytic degradation. Polym Degrad Stab 93:1964–1970

    Article  CAS  Google Scholar 

  34. Corrêa MCS, Rezende ML, Rosa DS, Agnelli JAM, Nascente PAP (2008) Surface composition and morphology of poly(3-hydroxybutyrate) exposed to biodegradation. Polym Test 27:447–452

    Article  Google Scholar 

  35. Karjomaa S, Suortti T, Selin JF, Itävaara M (1998) Microbial degradation of poly-(L-lactic acid) oligomers. Polym Degrad Stab 59(1–3):333–336

    Article  CAS  Google Scholar 

  36. IS0 17556:2003-Plastics-determination of the ultimate aerobic biodegradability in soil by measuring the oxygen demand in a respirometer or the amount of carbon dioxide evolved

  37. Massardier-Nageotte V, Pestre C, Cruard-Pradet T, Bayard R (2006) Aerobic and anaerobic biodegradability of polymer films and physico-chemical characterization. Polym Degrad Stab 91:620–627

    Article  CAS  Google Scholar 

  38. ISO 14851:1999/Cor 1:2005, Determination of the ultimate aerobic biodegradability of plastic materials in an aqueous medium—method by measuring the oxygen demand in a closed respirometer

  39. Ho KG, Pometto AL III (1999) Temperature effects on soil mineralization of polylactic acid plastic in laboratory respirometers. J Environ Polym Deg 7:101–108

    Article  CAS  Google Scholar 

  40. Itävaara M, Karjomaa S, Selin JF (2002) Biodegradation of polylactide in aerobic and anaerobic thermophilic conditions. Chemosphere 46:879–885

    Article  Google Scholar 

Download references

Acknowledgments

The work has been carried out under the project BIODESOPO funded by the European Commission (Marie Curie Fellowship of Dr. Ewa Rudnik). Dr. Ewa Rudnik thanks Mr. D.Giannopoulos from the AUA team for his help. The authors would like to express their thanks to Metabolix for the supplied Mirel samples and for providing relevant technical information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Briassoulis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudnik, E., Briassoulis, D. Comparative Biodegradation in Soil Behaviour of two Biodegradable Polymers Based on Renewable Resources. J Polym Environ 19, 18–39 (2011). https://doi.org/10.1007/s10924-010-0243-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-010-0243-7

Keywords

Navigation