Skip to main content
Log in

A GRASP-Based Approach for Dynamic Cache Resources Placement in Future Networks

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Dealing with the ever-increasing video traffic is certainly one of the major challenges facing Internet Service Providers (ISPs). In this context, the strategic placement of caches is seen as one of the most important remedies, especially with recent advances in the field of virtualization. Unlike the existing works, which only focus on the placement issue, we also consider the problem of determining the optimal amount of cache to place at each possible location. We formalize, in this paper, the problem of caches placement as a multi-objective optimization problem, in which we minimize both the average distance from which contents are retrieved and the peering links utilization. As the proposed problem is NP-hard, we propose to solve it using the Greedy Randomized Adaptive Search Procedure (GRASP) meta-heuristic. Simulations results reveal the quality of the obtained solutions compared to an exhaustive search method. At the same time, they reveal that the solution is not to put all resources at the edge or at the core, as some studies claim, but to partition them judiciously, which mainly depends on the objectives of the ISPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Weighted combined construction: \(f(X) = \sum _{i=1}^{k} w_i f_i(X)\), where \(w_i\) is the weight of the evaluation function \(f_i(X)\).

References

  1. Hawilo, H., Shami, A., Mirahmadi, M., Asal, R.: Nfv: state of the art, challenges, and implementation in next generation mobile networks (vepc). IEEE Netw. 28, 18–26 (2014)

    Article  Google Scholar 

  2. Li, X., Wang, X., Li, K., Leung, V.C.M.: Caas: caching as a service for 5g networks. IEEE Access 5, 5982–5993 (2017)

    Article  Google Scholar 

  3. Cisco,: Cisco visual networking index: forecast and trends, 2017–2022. White paper, (2018)

  4. Bastug, E., Bennis, M., Debbah, M.: Living on the edge: the role of proactive caching in 5g wireless networks. IEEE Commun. Mag. 52, 82–89 (2014)

    Article  Google Scholar 

  5. Araldo, A., Rossi, D., Martignon, F.: Cost-aware caching: caching more (costly items) for less (isps operational expenditures). IEEE Trans. Parallel Distrib. Syst. 27, 1316–1330 (2016)

    Article  Google Scholar 

  6. Rossi, D., Rossini, G.: On sizing ccn content stores by exploiting topological information. In: IEEE INFOCOM Workshops, pp. 280–285. (2012)

  7. Reddy, K.S., Moharir, S., Karamchandani, N.: Effects of storage heterogeneity in distributed cache systems. In: 16th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), pp. 1–8. (2018)

  8. Ben-Ammar, H., Hadjadj-Aoul, Y., Rubino, G., Ait-Chellouche, S.: On the performance analysis of distributed caching systems using a customizable markov chain model. J. Netw. Comput. Appl. 130, 39–51 (2019)

    Article  Google Scholar 

  9. Feo, T.A., Resende, M.: Greedy randomized adaptive search procedures. J. Glob. Optim. 6, 109–133 (1995)

    Article  MathSciNet  Google Scholar 

  10. Ben-Ammar, H., Hadjadj-Aoul, Y., Ait-Chellouche, S.: Efficiently allocating distributed caching resources in future smart networks. In: IEEE Annual Consumer Communications Networking Conference, pp. 1–4. (2019)

  11. Sahoo, J., Salahuddin, M.A., Glitho, R., Elbiaze, H., Ajib, W.: A survey on replica server placement algorithms for content delivery networks. IEEE Commun. Surv. Tutor. 19, 1002–1026 (2017)

    Article  Google Scholar 

  12. Krishnan, P., Raz, D., Shavitt, Y.: The cache location problem. IEEE ACM Trans. Netw. 8, 568–582 (2000)

    Article  Google Scholar 

  13. Laoutaris, N., Zissimopoulos, V., Stavrakakis, I.: On the optimization of storage capacity allocation for content distribution. Comput. Netw. 47, 409–428 (2004)

    Article  Google Scholar 

  14. Laoutaris, N., Zissimopoulos, V., Stavrakakis, I.: Joint object placement and node dimensioning for internet content distribution. Inf. Process. Lett. 89, 273–279 (2004)

    Article  MathSciNet  Google Scholar 

  15. Jamin, S., Jin, C., Kurc, A.R., Raz, D., Shavitt, Y.: Constrained mirror placement on the internet. In: Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies, pp. 31–40. (2001)

  16. Yin, H., Zhang, X., Zhan, T., Zhang, Y., Min, G., Wu, D.O.: Netclust: a framework for scalable and pareto-optimal media server placement. IEEE Trans. Multimed. 15, 2114–2124 (2013)

    Article  Google Scholar 

  17. Rodolakis, G., Siachalou, S., Georgiadis, L.: Replicated server placement with QoS constraints. IEEE Trans. Parallel Distrib. Syst. 17, 1151–1162 (2006)

    Article  Google Scholar 

  18. Chen, F., Guo, K., Lin, J., Porta, T.L.: Intra-cloud lightning: Building cdns in the cloud. In: IEEE INFOCOM, pp. 433–441. (2012)

  19. Benkacem, I., Taleb, T., Bagaa, M., Flinck, H.: Optimal vnfs placement in cdn slicing over multi-cloud environment. IEEE J. Sel. Areas Commun. 36, 616–627 (2018)

    Article  Google Scholar 

  20. Psaras, I., Chai, W.K., Pavlou, G.: In-network cache management and resource allocation for information-centric networks. IEEE Trans. Parallel Distrib. Syst. 25, 2920–2931 (2014)

    Article  Google Scholar 

  21. Fayazbakhsh, S., Lin, Y., Tootoonchian, A., Ghodsi, A., Koponen, T., Maggs, B., Ng, K., Sekar, V., Shenker, S.: Less pain, most of the gain: incrementally deployable icn. ACM SIGCOMM Comput. Commun. Rev. 43, 147–158 (2013)

    Article  Google Scholar 

  22. Wang, Y., Li, Z., Tyson, G., Uhlig, S., Xie, G.: Design and evaluation of the optimal cache allocation for content-centric networking. IEEE Trans. Comput. 65, 95–107 (2016)

    Article  MathSciNet  Google Scholar 

  23. Matias, J., Garay, J., Toledo, N., Unzilla, J., Jacob, E.: Toward an SDN-enabled nfv architecture. IEEE Commun. Mag. 53, 187–193 (2015)

    Article  Google Scholar 

  24. Han, B., Gopalakrishnan, V., Ji, L., Lee, S.: Network function virtualization: challenges and opportunities for innovations. IEEE Commun. Mag. 53, 90–97 (2015)

    Article  Google Scholar 

  25. Andrews, J.G., Buzzi, S., Choi, W., Hanly, S.V., Lozano, A., Soong, A.C.K., Zhang, J.C.: What will 5g be? IEEE J. Sel. Areas Commun. 32, 1065–1082 (2014)

    Article  Google Scholar 

  26. Dan, A., Towsley, D.: An approximate analysis of the LRU and FIFO buffer replacement schemes. In: SIGMETRICS Performance Evaluation Review, vol. 18, pp. 143–152. (1990)

    Article  Google Scholar 

  27. Fricker, C., Robert, P., Roberts, J., Sbihi, N.: Impact of traffic mix on caching performance in a content-centric network. In: Proceedings IEEE INFOCOM Workshops, pp. 310–315. (2012)

  28. Fricker, C., Robert, P., Roberts, J.: A versatile and accurate approximation for LRU cache performance. In: Proceedings of the 24th International Teletraffic Congress, pp. 1–8. (2012)

  29. Jacobson, V., Smetters, D., Thornton, J., Plass, M., Briggs, N., Braynard, R.: Networking named content. In: Proceedings of the 5th International Conference on Emerging Networking Experiments and Technologies, pp. 1–12. (2009)

  30. Ben-Ammar, H., Ait-Chellouche, S., Hadjadj-Aoul, Y.: A Markov chain-based approximation of CCN caching systems. In: IEEE Symposium on Computers and Communications, pp. 327–332. (2017)

  31. Johnson, T., Shasha, D.: 2q: a low overhead high performance buffer management replacement algorithm. In: Proceedings of the 20th International Conference on Very Large Data Bases, pp. 439–450. (1994)

  32. Ben-Ammar, H., Hadjadj-Aoul, Y., Rubino, G., Ait-Chellouche, S.: A versatile Markov chain model for the performance analysis of CCN caching systems. In: IEEE Global Communications Conference, pp. 1–6. (2018)

  33. Page, D.R.: Generalized algorithm for restricted weak composition generation. J. Math. Model. Algorithms Oper. Res. 12, 345–372 (2013)

    Article  MathSciNet  Google Scholar 

  34. Marti, R., Campos, V., Resende, M., Duarte, A.: Multiobjective grasp with path relinking. Eur. J. Oper. Res. 240, 54–71 (2014)

    Article  MathSciNet  Google Scholar 

  35. Guillemin, F., Houdoin, T., Moteau, S.: Volatility of youtube content in orange networks and consequences. In: 2013 IEEE International Conference on Communications (ICC), pp. 2381–2385. (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yassine Hadjadj-Aoul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben-Ammar, H., Hadjadj-Aoul, Y. A GRASP-Based Approach for Dynamic Cache Resources Placement in Future Networks. J Netw Syst Manage 28, 457–477 (2020). https://doi.org/10.1007/s10922-020-09521-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10922-020-09521-4

Keywords

Navigation