Skip to main content
Log in

Detail-Preserving Multi-exposure Fusion for DR Images of Turbine Blades with Local Contrast Analysis and Exposure Intensity

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Digital radiographic imaging technique based on the Digital Detector Array (DDA) plays an essential role in the non-destructive testing of turbine blades. However, the Digital radiography (DR) of turbine blade obtained by the X-ray spectrum at the single exposure parameter cannot provide effective information feedback to the whole blade in digital radiographic testing. Aiming at this critical issue, a detail-preserving fusion method of multi-exposure sequence DR images is presented in this paper. Firstly, the unordered DR images are divided into three categories of over-exposure, normal-exposure, and under-exposure by using clustering method. Then, the weight design methods based on local contrast analysis and exposure intensity are employed to accomplish the initial weight fusion. The guided filter and normalization are utilized to ensure the weight maps are edge-preserving and smoothing. Finally, the refined weight maps and initial DR images are decomposed by multiscale pyramid. The fused DR image can be reconstructed by the new fusion pyramid with satisfying visual effects. Four different experimental results show that the fused blade DR image can clearly show the full internal features of turbine blades, which integrally covers the advantages of high-exposure images and low-exposure images. Compared with the four existing DR fusion methods currently in use, the fusion effect of proposed method is most significantly improved. For four diverse kinds of turbine blades, all the fused images obtained by our method have the highest structural-similarity metric and the second shortest execution time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Chen, L., Li, B., Zhang, L., et al.: 3D positioning of defects for gas turbine blades based on digital radiographic projective imaging. NDT E Int. 133, 102751 (2023). https://doi.org/10.1016/j.ndteint.2022.102751

    Article  Google Scholar 

  2. Zhang, L., Li, B., Chen, L., et al.: Enhancement of digital radiographic images for gas turbine blades based on simple scattering model. J. Nondestr. Eval. 42(2), 33 (2023). https://doi.org/10.1007/s10921-023-00942-0

    Article  Google Scholar 

  3. Zhang, L., Li, B., Chen, L., et al.: Classification of internal defects of gas turbine blades based on the discrimination of linear attenuation coefficients. Insight Non-Destruct. Test. Cond. Monitor. 65(6), 335–340 (2023). https://doi.org/10.1784/insi.2023.65.6.335

    Article  Google Scholar 

  4. ASNT.: Nondestructive testing handbook. In: Radiographic Testing, vol. 3, 4th edn. American Society for Nondestructive Testing, Columbus, OH (2019)

  5. Qi, Y., Wang, L.: Multi-voltage digital radiography images fusion based on well-exposedness. Optik Int. J. Light Electron Optics 126(19), 1889–1893 (2015). https://doi.org/10.1016/j.ijleo.2015.05.005

    Article  Google Scholar 

  6. Mengqian, Y.U., Wei, W.U., Guanhua, W.U., et al.: Optimization of DR testing process parameters for turbine blades in aero engines. J. Aerosp. Power 1(23), 1–9 (2022). https://doi.org/10.13224/j.cnki.jasp.20210731

    Article  Google Scholar 

  7. Bing, L., Zhangbing, L., Lei, C.: Method for determining partition and exposure parameters of gas turbine blades by digital radiography. J. Xi’an Jiaotong Univ. 53, 31–39 (2019). https://doi.org/10.7652/xjtuxb201910005

    Article  Google Scholar 

  8. Shang, Z., Li, B., Chen, L., et al.: Adaptive segmentation method in radiographic testing for turbine blades based on spatial entropy. Rev. Sci. Instrum. 93(11), 113312 (2022). https://doi.org/10.1063/5.0103844

    Article  Google Scholar 

  9. Zhao, R., Liu, Y., Zhao, Z., et al.: Multi-energy X-ray images fusion method based on fuzzy entropy and sparse representation for complex castings. NDT E Int. 124, 102535 (2021). https://doi.org/10.1016/j.ndteint.2021.102535

    Article  Google Scholar 

  10. Xu, F., Liu, J., Song, Y., et al.: Multi-exposure image fusion techniques: a comprehensive review. Remote Sens. 14(3), 771 (2022). https://doi.org/10.3390/rs14030771

    Article  Google Scholar 

  11. Li, H., Ma, K., Yong, H., et al.: Fast multi-scale structural patch decomposition for multi-exposure image fusion. IEEE Trans. Image Process. 29, 5805–5816 (2020). https://doi.org/10.1109/TIP.2020.2987133

    Article  MathSciNet  MATH  Google Scholar 

  12. Bruce, N.D.B.: ExpoBlend: information preserving exposure blending based on normalized log-domain entropy: graphics interface. Comput. Graph. 39, 12–23 (2014). https://doi.org/10.1016/j.cag.2013.10.001

    Article  Google Scholar 

  13. Liu, S., Zhang, Y.: Detail-preserving under exposed image enhancement via optimal weighted multi-exposure fusion. IEEE Trans. Consum. Electron. 65(3), 303–311 (2019). https://doi.org/10.1109/TCE.2019.2893644

    Article  Google Scholar 

  14. Krämer, P., Weckenmann, A.: Multi-energy image stack fusion in computed tomography. Meas. Sci. Technol. 21(4), 045105 (2010). https://doi.org/10.1088/0957-0233/21/4/045105

    Article  Google Scholar 

  15. Qi, Y., Yang, Z., Kang, L.: Multi-exposure x-ray image fusion quality evaluation based on CSF and gradient amplitude similarity. J. Xray Sci. Technol. 29(4), 697–709 (2021). https://doi.org/10.3233/XST-210871

    Article  Google Scholar 

  16. Ulucan, O., Karakaya, D., Turkan, M.: Multi-exposure image fusion based on linear embeddings and watershed masking. Signal Process. 178, 107791 (2021). https://doi.org/10.1016/j.sigpro.2020.107791

    Article  Google Scholar 

  17. Bay, H., et al.: Speeded-up robust features (SURF). Comput. Vision Image Underst 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014

    Article  Google Scholar 

  18. Rublee, E., et al.: ORB: An efficient alternative to SIFT or SURF. In: International conference on computer vision. IEEE (2011). https://doi.org/10.1109/ICCV.2011.6126544

    Chapter  Google Scholar 

  19. Liu, Y., Liu, S., Wang, Z.: Multi-focus image fusion with dense SIFT. Inf. Fusion 23, 139–155 (2015). https://doi.org/10.1016/j.inffus.2014.05.004

    Article  Google Scholar 

  20. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60, 91–110 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.94

    Article  Google Scholar 

  21. Liu, Y., Wang, Z.: Dense SIFT for ghost-free multi-exposure fusion. J. Vis. Commun. Image Represent. 31, 208–224 (2015). https://doi.org/10.1016/j.jvcir.2015.06.021

    Article  Google Scholar 

  22. Lee, S., Park, J.S., Cho, N.I.: A multi-exposure image fusion based on the adaptive weights reflecting the relative pixel intensity and global gradient. In: 2018 25th IEEE international conference on image processing (ICIP), pp. 1737–1741. IEEE (2018). https://doi.org/10.1109/ICIP.2018.8451153

    Chapter  Google Scholar 

  23. He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1397–1409 (2013). https://doi.org/10.1109/TPAMI.2012.213

    Article  Google Scholar 

  24. Huang, L., et al.: Multi-exposure image fusion based on feature evaluation with adaptive factor. IET Image Proc. 15(13), 3211–3220 (2021). https://doi.org/10.1049/ipr2.12317

    Article  Google Scholar 

  25. Mertens, T., Kautz, J., Van Reeth, F.: Exposure fusion: a simple and practical alternative to high dynamic range photography. Comput. Graph. Forum 28(1), 161–171 (2009). https://doi.org/10.1111/j.1467-8659.2008.01171.x

    Article  Google Scholar 

  26. Karakaya, D., Ulucan, O., Turkan, M.: PAS-MEF Multi-exposure image fusion based on principal component analysis, adaptive well-exposedness and saliency map. In: ICASSP 2022-2022 IEEE international conference on acoustics, speech and signal processing ICASSP. IEEE (2022). https://doi.org/10.1109/ICASSP43922.2022.9746779

    Chapter  Google Scholar 

  27. Wang, Q., et al.: Detail-enhanced multi-scale exposure fusion in YUV color space. IEEE Trans. Circuits Syst. Video Technol. 30(8), 2418–2429 (2020). https://doi.org/10.1109/TCSVT.2019.2919310

    Article  Google Scholar 

  28. Ma, K., et al.: Multi-exposure image fusion by optimizing a structural similarity index. IEEE Trans. Comput. Imaging 4(1), 60–72 (2017). https://doi.org/10.1109/TCI.2017.2786138

    Article  MathSciNet  Google Scholar 

  29. Ma, K., Zeng, K., Wang, Z.: Perceptual quality assessment for multi-exposure image fusion. IEEE Trans. Image Process. 24(11), 3345–3356 (2015). https://doi.org/10.1109/TIP.2015.2442920

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The authors are grateful for the financial support provided by the Fundamental Research Funds for the Central Universities (grant number xhj032021006-05), the Key Research and Dvelopment Program of Shaanxi (grant number 2023-YBGY-397).

Author information

Authors and Affiliations

Authors

Contributions

LZ: Data Curation, methodology, validation, writing—original draft; BL: Resources, review, supervision; LC: Review and editing, investigation; WX: Review and editing, supervision; ZS: Review and conceptualization, supervision.

Corresponding author

Correspondence to Lei Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All the authors have agreed for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Li, B., Chen, L. et al. Detail-Preserving Multi-exposure Fusion for DR Images of Turbine Blades with Local Contrast Analysis and Exposure Intensity. J Nondestruct Eval 42, 98 (2023). https://doi.org/10.1007/s10921-023-01008-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-023-01008-x

Keywords

Navigation