Skip to main content
Log in

Use of Passive Thermography to Detect Detachment and Humidity in Façades Clad with Ceramic Materials of Differing Porosities

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Ceramic is a type of material for the cladding of façades that affords protection and contributes to the aesthetics of the building. Nevertheless, this type of cladding can develop defects such as water penetration and detachment. Passive Infrared Thermography is a type of nondestructive testing used to identify these defects. Its results are strongly influenced by the intensity of the heat source (the sun). They are also affected by the cladding material, as the thermal properties of the material are influenced by its physical properties, such as porosity. In this study, passive thermography is used to detect detachment and humidity in ceramic panels of different porosities. The thermal parameters were evaluated 14 h before and after the incidence of direct sunlight. The tools used to interpret the thermograms were visual analysis and contrast functions. The results show that all three methods identified the defects and the influence of the material porosity. The most representative difference was found in the ceramics of greater porosity, especially at higher temperatures, and in the cooling period for the less porous ones. The evolution of the thermographic contrasts showed that in the cycle of incident heat, the differences between the two porosities were significant, indicating that this is a good strategy for evaluating anomalies in façades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Source Satellite image (2022)

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The data that support the findings of this study are openly available in [repository PPGD] at [https://mestrados.uemg.br/ppgd-producao/dissertacoes-ppgd], Reference Number [2019].”

References

  1. Bergman, T.L., Lavine, A.S., Incropera, F.P., DeWitt, D.P.: Fundamentals of Heat and Mass Transfer. Wiley, New York (2018)

    Google Scholar 

  2. Bauer, E., Pavón, E., Barreira, E., Kraus, C.E.: Analysis of building facade defects using infrared thermography: laboratory studies. J. Build. Eng. 6, 93–104 (2016)

    Article  Google Scholar 

  3. Lourenço, T., Matias, L., Faria, P.: Anomalies detection in adhesive wall tiling systems by infrared thermography. Constr. Build. Mater. 148, 419–428 (2017). https://doi.org/10.1016/j.conbuildmat.2017.05.052

    Article  Google Scholar 

  4. Trofimov, A.A., Watkins, T.R., Muth, T.R., Cola, G.M., Wang, H.: Infrared thermometry in high temperature materials processing: influence of liquid water and steam. Quant. Infrared Thermogr. J. 20(3), 123–141 (2023). https://doi.org/10.1080/17686733.2022.2043617

    Article  Google Scholar 

  5. Kim, C., Park, G., Jang, H., Kim, E.-J.: Automated classification of thermal defects in the building envelope using thermal and visible images. Quant. Infrared Thermogr. J. 20(3), 106–122 (2023). https://doi.org/10.1080/17686733.2022.2033531

    Article  Google Scholar 

  6. Gabbi, A.M., et al.: Use of infrared thermography to estimate enteric methane production in dairy heifers. Quant. Infrared Thermogr. J. 19(3), 187–195 (2022). https://doi.org/10.1080/17686733.2021.1882075

    Article  Google Scholar 

  7. Tao, N., Wang, C., Zhang, C., Sun, J.: Quantitative measurement of cast metal relics by pulsed thermal imaging. Quant. Infrared Thermogr. J. 19(1), 27–40 (2022). https://doi.org/10.1080/17686733.2020.1799304

    Article  Google Scholar 

  8. Shoa, P., Hemmat, A., Amirfattahi, R., Gheysari, M.: Automatic extraction of canopy and artificial reference temperatures for determination of crop water stress indices by using thermal imaging technique and a fuzzy-based image-processing algorithm. Quant. Infrared Thermogr. J. 19(2), 85–96 (2022). https://doi.org/10.1080/17686733.2020.1819707

    Article  Google Scholar 

  9. Hakim, A.S., Awale, R.N.: Extraction of hottest blood vessels from breast thermograms using state-of-the-art image segmentation methods. Quant. Infrared Thermogr. J. 19(5), 347–365 (2022). https://doi.org/10.1080/17686733.2021.1974209

    Article  Google Scholar 

  10. Yoon, S.T., Park, J.C., Cho, Y.J.: An experimental study on the evaluation of temperature uniformity on the surface of a blackbody using infrared cameras. Quant. Infrared Thermogr. J. 19(3), 172–186 (2022). https://doi.org/10.1080/17686733.2021.1877918

    Article  Google Scholar 

  11. Yixian, D., Dexin, H., Zewen, D., Shuliang, Y.: Non-destructive evaluation method for thermal parameters of prismatic Li-ion cell using infrared thermography. Quant. Infrared Thermogr. J. 20(1), 14–24 (2023). https://doi.org/10.1080/17686733.2021.2010380

    Article  Google Scholar 

  12. de Lima, G.G., et al.: Effect of unidirectional freezing using a thermal camera on polyvinyl (alcohol) for aligned porous cryogels. Quant. Infrared Thermogr. J. 18(3), 177–186 (2021). https://doi.org/10.1080/17686733.2020.1732735

    Article  Google Scholar 

  13. Yu, E., Koroteeva, A., Bashkatov, A.A.: Thermal signatures of liquid droplets on a skin induced by emotional sweating. Quant. Infrared Thermogr. J. 19(2), 115–125 (2022). https://doi.org/10.1080/17686733.2020.1846113

    Article  Google Scholar 

  14. Kidangan, R.T., Krishnamurthy, C.V., Balasubramaniam, K.: Detection of dis-bond between honeycomb and composite facesheet of an inner fixed structure bond panel of a jet engine nacelle using infrared thermographic techniques. Quant. Infrared Thermogr. J. 19(1), 12–26 (2022). https://doi.org/10.1080/17686733.2020.1793284

    Article  Google Scholar 

  15. Archer, T., Beauchêne, P., Passilly, B., Roche, J.-M.: Use of laser spot thermography for the non-destructive imaging of thermal fatigue microcracking of a coated ceramic matrix composite. Quant. Infrared Thermogr. J. 18(3), 141–158 (2021). https://doi.org/10.1080/17686733.2019.1705732

    Article  Google Scholar 

  16. Resende, M.M., Gambare, E.B., Silva, L.A., Y. de S. Cordeiro, E. Almeida, and R. P. Salvador: Infrared thermal imaging to inspect pathologies on façades of historical buildings: a case study on the Municipal Market of São Paulo, Brazil. Case Stud. Constr. Mater. 16, e01122 (2022). https://doi.org/10.1016/j.cscm.2022.e01122

    Article  Google Scholar 

  17. Li, Z., Jin, Y., Liang, X., Zeng, J.: Thermography evaluation of defect characteristics of building envelopes in urban villages in Guangzhou, China. Case Stud. Constr. Mater. 17, e01373 (2022). https://doi.org/10.1016/j.cscm.2022.e01373

    Article  Google Scholar 

  18. O’Grady, M., Lechowska, A.A., Harte, A.M.: Infrared thermography technique as an in-situ method of assessing heat loss through thermal bridging. Energy Build. 135, 20–32 (2017). https://doi.org/10.1016/j.enbuild.2016.11.039

    Article  Google Scholar 

  19. Banister, C., Bartko, M., Berquist, J., Macdonald, I., Vuotari, M., Wills, A.: Energy and emissions effects of airtightness for six non-residential buildings in Canada with comparison to contemporary limits and assumptions. J. Build. Eng. 58, 104977 (2022). https://doi.org/10.1016/j.jobe.2022.104977

    Article  Google Scholar 

  20. BS EN 13187, Thermal Performance of Buildings. Qualitative Detection of Thermal Irregularities in Building Envelopes. Infrared Method. London, UK (1999)

  21. STM D4788-03, Standard Test Method for Detecting Delaminations in Bridge Decks Using Infrared Thermography. West Conshohocken, PA, USA (2013).

  22. Hart, J.M.: A practical guide to infra-red thermography for building surveys. Build. Res. Establ. (1991). https://www.aivc.org/sites/default/files/airbase_6460.pdf

  23. Huh, J., Tran, Q.H., Lee, J.-H., Han, D., Ahn, J.-H., Yim, S.: Experimental study on detection of deterioration in concrete using infrared thermography technique. Adv. Mater. Sci. Eng. 2016, 1–12 (2016). https://doi.org/10.1155/2016/1053856

    Article  Google Scholar 

  24. Hiasa, S., Birgul, R., Matsumoto, M., Catbas, F.N.: Experimental and numerical studies for suitable infrared thermography implementation on concrete bridge decks. Measurement 121, 144–159 (2018). https://doi.org/10.1016/j.measurement.2018.02.019

    Article  Google Scholar 

  25. Tomita, K., Chew, M.Y.L.: A review of infrared thermography for delamination detection on infrastructures and buildings. Sensors 22(2), 423 (2022). https://doi.org/10.3390/s22020423

    Article  Google Scholar 

  26. Hoffmann, D., Bastian, M., Schober, G.: New approach for layer thickness measurements of coatings using pulsed lock-in thermography. Quant. Infrared Thermogr. J. 19(2), 71–84 (2022). https://doi.org/10.1080/17686733.2020.1816752

    Article  Google Scholar 

  27. Fleuret, J., Ebrahimi, S., Castanedo, C.I., Maldague, X.: On the use of pulsed thermography signal reconstruction based on linear support vector regression for carbon fiber reinforced polymer inspection. Quant. Infrared Thermogr. J. 20(2), 39–61 (2023). https://doi.org/10.1080/17686733.2021.2025015

    Article  Google Scholar 

  28. Lizaranzu, M., Lario, A., Chiminelli, A., Amenabar, I.: Non-destructive testing of composite materials by means of active thermography-based tools. Infrared Phys. Technol. 71, 113–120 (2015). https://doi.org/10.1016/j.infrared.2015.02.006

    Article  Google Scholar 

  29. Youcef, M.H.A.L., Feuillet, V., Ibos, L., Candau, Y.: In situ quantitative diagnosis of insulated building walls using passive infrared thermography. Quant Infrared Thermogr. J. 19(1), 41–69 (2022). https://doi.org/10.1080/17686733.2020.1805939

    Article  Google Scholar 

  30. Edis, E., Flores-Colen, I., de Brito, J.: Passive thermographic detection of moisture problems in façades with adhered ceramic cladding. Constr. Build. Mater. 51, 187–197 (2014). https://doi.org/10.1016/j.conbuildmat.2013.10.085

    Article  Google Scholar 

  31. Martínez, I., Martínez, E.: Qualitative timber structure assessment with passive IR thermography. Case study of sources of common errors. Case Stud. Constr. Mater. 16, e00789 (2022). https://doi.org/10.1016/j.cscm.2021.e00789

    Article  Google Scholar 

  32. Kirimtat, A., Krejcar, O.: A review of infrared thermography for the investigation of building envelopes: advances and prospects. Energy Build. 176, 390–406 (2018). https://doi.org/10.1016/j.enbuild.2018.07.052

    Article  Google Scholar 

  33. Valero, L.R., Sasso, V.F., Vicioso, E.P.: In situ assessment of superficial moisture condition in façades of historic building using non-destructive techniques. Case Stud. Constr. Mater. 10, 1–14 (2019). https://doi.org/10.1016/j.cscm.2019.e00228

    Article  Google Scholar 

  34. Barreira, E., Almeida, R.M.S.F., Delgado, J.M.P.Q.: Infrared thermography for assessing moisture related phenomena in building components. Constr. Build. Mater. 110, 251–269 (2016). https://doi.org/10.1016/j.conbuildmat.2016.02.026

    Article  Google Scholar 

  35. Maldague, X.P.V.: Introduction to NDT by active infrared thermography. Mater. Eval. 60(9), 1060–1073 (2002)

    Google Scholar 

  36. Bauer, E., Pavón, E., Oliveira, E., Pereira, C.H.F.: Facades inspection with infrared thermography: cracks evaluation. J. Build. Pathol. Rehabil. (2016). https://doi.org/10.1007/s41024-016-0002-9

    Article  Google Scholar 

  37. Sfarra, S., Cicone, A., Yousefi, B., Ibarra-Castanedo, C., Perilli, S., Maldague, X.: Improving the detection of thermal bridges in buildings via on-site infrared thermography: the potentialities of innovative mathematical tools. Energy Build. 182, 159–171 (2019). https://doi.org/10.1016/j.enbuild.2018.10.017

    Article  Google Scholar 

  38. Silva, M.G., Lima, L.F.: Agressividade da água no concreto, 6th edn. LTC, Rio de Janeiro (2019)

    Google Scholar 

  39. Maldague, P.X.: Theory and Practice of Infrared Technology for Nondestructive Testing. Wiley, New York (2001)

    Google Scholar 

  40. Cheng, C.C., Cheng, T.M., Chiang, C.H.: Defect detection of concrete structures using both infrared thermography and elastic waves. Autom. Constr. 18(1), 87–92 (2008). https://doi.org/10.1016/j.autcon.2008.05.004

    Article  Google Scholar 

  41. Bergman, T.: Principle of Heat and Mass Transfer, 8th edn. Wiley, Hoboken (2020)

    Google Scholar 

  42. Matour, S., Garcia-Hansen, V., Omrani, S., Hassanli, S., Drogemuller, R.: Thermal performance and airflow analysis of a new type of Double Skin Façade for warm climates: an experimental study. J. Build. Eng. 62, 105323 (2022). https://doi.org/10.1016/j.jobe.2022.105323

    Article  Google Scholar 

  43. Usamentiaga, R., Venegas, P., Guerediaga, J., Vega, L., Molleda, J., Bulnes, F.: Infrared thermography for temperature measurement and non-destructive testing. Sensors 14(7), 12305–12348 (2014). https://doi.org/10.3390/s140712305

    Article  Google Scholar 

  44. ASTM E1933-99a, Standard Test Methods for Measuring and Compensating for Emissivity Using Infrared Imaging Radiometers. West Conshohocken, PA, USA (2013).

  45. Bauer, E., Lucenas, R.R.D., Elier, P.: Criteria for identification and diagnosis of anomalies in ceramic facades through quantitative infrared thermography. Ambiente Construído 23, 101–119 (2023). https://doi.org/10.1590/s1678-86212023000200665

    Article  Google Scholar 

  46. Bisegna, F., Ambrosini, D., Paoletti, D., Sfarra, S., Gugliermetti, F.: A qualitative method for combining thermal imprints to emerging weak points of ancient wall structures by passive infrared thermography—a case study. J. Cult. Herit. 15(2), 199–202 (2014). https://doi.org/10.1016/j.culher.2013.03.006

    Article  Google Scholar 

  47. Garrido, I., Barreira, E., Almeida, R.M.S.F., Lagüela, S.: Introduction of active thermography and automatic defect segmentation in the thermographic inspection of specimens of ceramic tiling for building façades. Infrared Phys. Technol. 121, 104012 (2022). https://doi.org/10.1016/j.infrared.2021.104012

    Article  Google Scholar 

  48. Khoukhi, M.: The combined effect of heat and moisture transfer dependent thermal conductivity of polystyrene insulation material: impact on building energy performance. Energy Build 169, 228–235 (2018). https://doi.org/10.1016/j.enbuild.2018.03.055

    Article  Google Scholar 

  49. Lucchi, E.: Applications of the infrared thermography in the energy audit of buildings: a review. Renew. Sustain. Energy Rev. 82, 3077–3090 (2018). https://doi.org/10.1016/j.rser.2017.10.031

    Article  Google Scholar 

  50. Bauer, E., de Freitas, V.P., Mustelier, N., Barreira, E., de Freitas, S.S.: Infrared thermography—evaluation of the results reproducibility. Struct. Surv. 33(1), 20–35 (2015). https://doi.org/10.1108/SS-05-2014-0021

    Article  Google Scholar 

  51. de Freitas, S.S., de Freitas, V.P., Barreira, E.: Detection of façade plaster detachments using infrared thermography—a nondestructive technique. Constr. Build. Mater. 70, 80–87 (2014). https://doi.org/10.1016/j.conbuildmat.2014.07.094

    Article  Google Scholar 

  52. Fox, M., Coley, D., Goodhew, S., De Wilde, P.: Time-lapse thermography for building defect detection. Energy Build. 92, 95–106 (2015). https://doi.org/10.1016/j.enbuild.2015.01.021

    Article  Google Scholar 

  53. Santhosh, U., Gowayed, Y., Ojard, G., Smyth, I., Kalarikkal, S., Jefferson, G.: Quantification of porosity in ceramic matrix composites using thermography. J. Nondestr. Eval. 37(2), 37 (2018). https://doi.org/10.1007/s10921-018-0487-z

    Article  Google Scholar 

Download references

Acknowledgements

To CAPES (Coordination for the Improvement of Higher Education Personnel), Brazil, and the CNPq (Council National Scientific and Technological Development), Brazil, Brazil for supporting the study.

Funding

FAPEMIG (Foundation for the Support of Minas Gerais State Survey).

Author information

Authors and Affiliations

Authors

Contributions

Writing original draft preparation, Sátiro, Sales and Alvaremga; conceptualization, Sátiro, Sales and Aguilar; methodology/validation, Sátiro, Marçal, Alvarenga and Amianti; formal analysis, Sátiro, Sales and Agular; writing review and editing, supervision, Sales and Aguilar All authors have read and agreed to the published version of the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Rosemary do Bom Conselho Sales.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors have approved this manuscript and its submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilar, M.T.P., Sátiro, D.E.A., Alvarenga, C.B.C.S. et al. Use of Passive Thermography to Detect Detachment and Humidity in Façades Clad with Ceramic Materials of Differing Porosities. J Nondestruct Eval 42, 92 (2023). https://doi.org/10.1007/s10921-023-01007-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-023-01007-y

Keywords

Navigation