Skip to main content
Log in

A Calibration Technique for Ultrasonic Immersion Transducers and Challenges in Moving Towards Immersion Based Harmonic Imaging

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The present article describes the calibration of ultrasonic immersion transducers using reciprocity technique. A step-by-step procedure and instrumentation requirements for transducer calibration are presented. Challenges encountered during the calibration experiment such as diffraction and attenuation corrections, and mismatched electrical impedances were also explored. The calibrated transducer was used to measure the acoustic nonlinearity parameter (β) of distilled water using the finite amplitude method. The objective of the current study is to identify potential challenges while moving towards a nonlinear immersion scanning technique for immersed engineering solids. Challenges such as effect of additives (corrosion inhibitors, surfactants etc.), misalignment of transducers, and effect of longer propagation paths were explored. Additives to distilled water were found to decrease the β of the mixture, and for an axial transducer misalignment of 2 mm, β was observed to increase by a factor of 2. Finally, the effect of propagation distance and excitation amplitude is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Carstensen, Bacon, D.R.: In: Hamilton, M.F., Blackstock, D.T. (eds.) Nonlinear Acoustics, chap. 15, pp. 421–448. Academic Press, San Diego (1998)

  2. Matlack, K.H., Kim, J.-Y., Jacobs, L.J., Qu, J.: Review of second harmonic generation measurement techniques for material state determination in metals. J. Nondestr. Eval. 34, 273 (2015)

    Article  Google Scholar 

  3. Hurley, D.C., Yost, W.T.: ES Boltz and CM Fortunko (1997) A Comparison of Three Techniques to Determine the Nonlinear Ultrasonic Parameter β. Review of Progress in Quantitative Nondestructive Evaluation. Springer, Boston (1997)

    Google Scholar 

  4. Hurley, D.C., Fortunko, C.M.: Determination of the nonlinear ultrasonic parameter using a Michelson interferometer. Meas. Sci. Technol. 8, 634 (1997)

    Article  Google Scholar 

  5. Cantrell, J.H.: Nondestructive Evaluation of Metal Fatigue Using Nonlinear Acoustics. Review of Progress in Quantitative Nondestructive Evaluation (2009)

  6. Cantrell, J.H., Salama, K.: Acoustoelastic characterisation of materials. Int. Mater. Rev. 36, 125–145 (1991)

    Article  Google Scholar 

  7. Potter, J.N., Croxford, A.J., Wilcox, P.D.: Nonlinear ultrasonic phased array imaging. Phys. Rev. Lett. 113, 144301 (2014)

    Article  Google Scholar 

  8. Ulrich, T.J., Johnson, P.A., Sutin, A.: Imaging nonlinear scatterers applying the time reversal mirror. J. Acoust. Soc. Am. 119, 1514–1518 (2006)

    Article  Google Scholar 

  9. Cheng, J., Potter, J.N., Croxford, A.J., Drinkwater, B.W.: Monitoring fatigue crack growth using nonlinear ultrasonic phased array imaging. Smart Mater. Struct. 26, 055006 (2017)

    Article  Google Scholar 

  10. Solodov, I., Rahammer, M., Gulnizkij, N., Kreutzbruck, M.: Noncontact sonic NDE and defect imaging via local defect resonance. J. Nondestr. Eval. 35, 48 (2016)

    Article  Google Scholar 

  11. Kazakov, V.V., Johnson, P.A.: Nonlinear wave modulation imaging. Nonlinear Acoust. Begin. 21st Century 2, 763–766 (2002)

    Google Scholar 

  12. Lim, H.J., Song, B., Park, B., Sohn, H.: Noncontact fatigue crack visualization using nonlinear ultrasonic modulation. NDT E Int. 73, 8–14 (2015)

    Article  Google Scholar 

  13. Gong, X.-F., Ruo, F., Cheng-ya, Z., Tao, S.: Ultrasonic investigation of the nonlinearity parameter B/A in biological media. J. Acoust. Soc. Am. 76, 949–950 (1984)

    Article  Google Scholar 

  14. Gong, X.-F., Zhu, Z.-M., Shi, T., Huang, J.-H.: Determination of the acoustic nonlinearity parameter in biological media using FAIS and ITD methods. J. Acoust. Soc. Am. 86, 1–5 (1989)

    Article  Google Scholar 

  15. Zhu, Z., Roos, M.S., Cobb, W.N., Jensen, K.: Determination of the acoustic nonlinearity parameter B/A from phase measurements. J. Acoust. Soc. Am. 74, 1518–1521 (1983)

    Article  Google Scholar 

  16. Khelladi, H., Plantier, F., Daridon, J.L., Djelouah, H.: Measurement under high pressure of the nonlinearity parameter B/A in glycerol at various temperatures. Ultrasonics 49, 668–675 (2009)

    Article  Google Scholar 

  17. Plantier, F., Daridon, J.-L., Lagourette, B.: Measurement of the B/A nonlinearity parameter under high pressure: application to water. J. Acoust. Soc. Am. 111, 707–715 (2002)

    Article  Google Scholar 

  18. Dace, G.E., Thompson, R.B., Brasche, L.J.H., Rehbein, D.K., Buck, O.: Nonlinear Acoustics, a Technique to Determine Microstructural Changes in Materials. Review of Progress in Quantitative Nondestructive Evaluation (1991)

  19. Dace, G.E., Thompson, R.B., Buck, O.: Measurement of the Acoustic Harmonic Generation for Materials Characterization Using Contact Transducers. Review of Progress in Quantitative Nondestructive Evaluation, vol. 11B (1992)

  20. Sittig, E.K.: Transmission parameters of thickness-driven piezoelectric transducers arranged in multilayer configurations. IEEE Trans. Son. Ultrason. 14, 167–174 (1967)

    Article  Google Scholar 

  21. Yost, W.T., Cantrell, J.H.: Absolute ultrasonic displacement amplitude measurements with a submersible electrostatic acoustic transducer. Rev. Sci. Instrum. 63(9), 4182–4188 (1992)

    Article  Google Scholar 

  22. Barnard, D.J., Chakrapani, S.K.: Measurement of nonlinearity parameter (β) of water using commercial immersion transducers. In: AIP Conference Proceedings (2016)

  23. Rogers, P.H., Van Buren, A.L.: An exact expression for the Lommel-diffraction correction integral. J. Acoust. Soc. Am. 55, 724–728 (1974)

    Article  Google Scholar 

  24. Krautkrämer, J., Krautkrämer, H.: Ultrasonic Testing of Materials. Springer, Berlin (1990)

    Book  Google Scholar 

  25. Cobb, W.N.: Finite amplitude method for the determination of the acoustic nonlinearity parameter B/A. J. Acoust. Soc. Am. 73, 1525–1531 (1983)

    Article  Google Scholar 

  26. Pantea, C., Osterhoudt, C.F., Sinha, D.N.: Determination of acoustical nonlinear parameter β of water using the finite amplitude method. Ultrasonics 53, 1012–1019 (2013)

    Article  Google Scholar 

  27. Adler, L., Hiedemann, E.A.: Determination of the nonlinearity parameter B/A for water and m-xylene. J. Acoust. Soc. Am. 34, 410–412 (1962)

    Article  Google Scholar 

  28. Law, W.K., Frizzell, L.A., Dunn, F.: Ultrasonic determination of the nonlinearity parameter B/A for biological media. J. Acoust. Soc. Am. 69, 1210–1212 (1981)

    Article  Google Scholar 

  29. Breazeale, M.A., Thompson, D.O.: Finite-amplitude ultrasonic waves in aluminum. Appl. Phys. Lett. 3, 77–78 (1963)

    Article  Google Scholar 

  30. Yost, W.T., Cantrell Jr., J.H., Breazeale, M.A.: Ultrasonic nonlinearity parameters and third-order elastic constants of copper between 300 and 3° K. J. Appl. Phys. 52, 126–128 (1981)

    Article  Google Scholar 

  31. Breazeale, M.A., Philip, J.: Determination of third-order elastic constants from ultrasonic harmonic generation measurement. In: Mason, W.P., Thurston, R.N. (eds.) Physical Acoustics, vol. XVII, pp. 1–60. Academic Press, New York (1984)

    Google Scholar 

  32. Barnard, D.J., McKenna, M.J., Foley, J.C.: Absolute displacement calibration techniques for commercial superheterodyne receivers. In: AIP Conference Proceedings (2001)

  33. Na, J.K., Yost, W.T., Cantrell, J.H., Kessel, G.L.: Effects of surface roughness and nonparallelism on the measurement of the acoustic nonlinearity parameter in steam turbine blades. In: AIP Conference Proceedings (2000)

  34. Prieur, F., Johansen, T.F., Holm, S., Torp, H.: Fast simulation of second harmonic ultrasound field using a quasi-linear method. J. Acoust. Soc. Am. 131, 4365–4375 (2012)

    Article  Google Scholar 

  35. Meredith, G.R.: Cascading in optical third-harmonic generation by crystalline quartz. Phys. Rev. B 24, 5522 (1981)

    Article  Google Scholar 

  36. Blackstock, D.T., Hamilton, M.F., Pierce, A.D.: In: Hamilton, M.F., Blackstock, D.T. (eds.) Nonlinear Acoustics, chap. 4, pp. 65–150. Academic Press, San Diego (1998)

  37. Fay, R.D.: Plane sound waves of finite amplitude. J. Acoust. Soc. Am. 3, 222–241 (1931)

    Article  Google Scholar 

  38. Jeong, H., Zhang, S., Barnard, D., Li, X.: Significance of accurate diffraction corrections for the second harmonic wave in determining the acoustic nonlinearity parameter. AIP Adv. 5, 097179 (2015)

    Article  Google Scholar 

  39. Ingenito, F., Williams Jr., A.O.: Calculation of second-harmonic generation in a piston beam. J. Acoust. Soc. Am. 49, 319–328 (1971)

    Article  Google Scholar 

  40. Chakrapani, S.K., Howard, A., Barnard, D.: Influence of surface roughness on the measurement of acoustic nonlinearity parameter of solids using contact piezoelectric transducers. Ultrasonics 84, 112–118 (2018)

    Article  Google Scholar 

  41. Vander Meulen, F., Haumesser, L.: Layer contributions to the nonlinear acoustic radiation from stratified media. Ultrasonics 72, 34–41 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Industry/University cooperative Research Program of the Center for Nondestructive Evaluation at Iowa State University. The authors would also like to thank Dr. Jenifer Saldanha for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kishore Chakrapani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakrapani, S.K., Barnard, D.J. A Calibration Technique for Ultrasonic Immersion Transducers and Challenges in Moving Towards Immersion Based Harmonic Imaging. J Nondestruct Eval 38, 76 (2019). https://doi.org/10.1007/s10921-019-0613-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-019-0613-6

Keywords

Navigation