Skip to main content

Advertisement

Log in

A Feasibility Study of Diabetic Retinopathy Detection in Type II Diabetic Patients Based on Explainable Artificial Intelligence

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Diabetic retinopathy (DR) is vision impairment and a life-threatening condition for diabetic patients. Especially type II diabetic people have higher chances of getting retinal problems. Hence, early prediction of DR is necessary for preventing the diabetic patients from vision impairment. The main aim of this feasibility study is to identify the most critical risk features that could lead to diabetic retinopathy. This study investigated type II diabetic patients’ socio-analytical, diabetes, behavioral, and clinical risk factors. We conducted a self-individual questionnaire session for all participants. Our questionnaire asked about the reliability of results, feeling comfortable during the screening test, willingness to participate in future screenings, overall perspective, and satisfaction with the DR screening test. We proposed a random forest model for predicting the prevalence of DR risk among diabetics. Further explanations of the model were conducted using more robust SHAP eXplainable Artificial Intelligence (XAI) tools. The SHAP method makes it possible to understand how input variables interact with their representative output records, as well as how input variables are ranked. In addition, various descriptive and inferential statistical analyses were performed on the data and evaluated the significant relationship between the factors discussed above via hypothesis testing. This feasibility study involved 172 type II diabetic patients (73 males and 99 females). Therefore, we found that 81 (47.09%) out of 172 participants had referable DR. The average age of the patients was determined as 55.08, with a standard deviation of ± 9.770 (ranging from 40 to 79). Type II patients were affected by mild, moderate, severe, and advanced proliferative diabetic retinopathy (PDR) stages with 23.83%, 13.95%, 5.81%, and 3.48%, respectively, of the total samples. The developed RF model obtained high accuracy of 94.9% using clinical dataset. Our results showed that the formation of tiny microminiature lesions was noticeable in type II diabetic patients with aged people, abnormal blood glucose levels, and prolonged diabetes duration.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author upon reasonable request.

Abbreviations

Anti VEGF:

Anti vascular endothelial growth factor

ANOVA:

Analysis of variance

BMI:

Body mass index

DBP:

Diastolic blood pressure

DR:

Diabetic retinopathy

EOS:

Electro optical system

ETDRS:

Early Treatment Diabetic Retinopathy Study

EURODIB:

Epidemiology and prevention of diabetes study

FOV:

Field of view

HbA1c:

Haemoglobin A1c

HSD:

Honestly significant difference

KMO:

Kaiser-Meyer-Olkin method

KNN:

K-nearest neighbour

LCD:

Liquid crystal display

LR:

Logistic Regression

NB:

Naïve Bayes

NHS:

National health service

NPDR:

Non proliferative diabetic retinopathy

PDR:

Proliferative diabetic retinopathy

RF:

Random Forest

SBP:

Systolic blood pressure

SHAP:

Shapley Additive Explanation

SPSS:

Software package for social science

SVM:

Support Vector Machine

WESDR:

Wisconsin epidemiologic study of diabetic retinopathy

References

  1. Egan, A. M., & Dinneen, S. F. (2019). What is diabetes?. Medicine, 47(1), 1-4.

    Article  Google Scholar 

  2. Akhtar, S. N., & Dhillon, P. (2017). Prevalence of diagnosed diabetes and associated risk factors: Evidence from the large-scale surveys in India. Journal of Social Health and Diabetes, 5(01), 028-036.

    Article  Google Scholar 

  3. Narang, R. (2010). Measuring perceived quality of health care services in India. International journal of health care quality assurance, 23(2), 171-186.

    Article  PubMed  Google Scholar 

  4. Pradeepa, R., Deepa, R., & Mohan, V. (2002). Epidemiology of diabetes in India--current perspective and future projections. Journal of the Indian Medical Association, 100(3), 144-148.

    PubMed  Google Scholar 

  5. Bonnin, S., Dupas, B., Lavia, C., Erginay, A., Dhundass, M., Couturier, A., ... & Tadayoni, R. (2019). Anti–vascular endothelial growth factor therapy can improve diabetic retinopathy score without change in retinal perfusion. Retina (Philadelphia, Pa.), 39(3), 426. https://doi.org/10.1097/IAE.0000000000002422

    Article  CAS  PubMed  Google Scholar 

  6. Murthy, G. V., Gupta, S. K., Bachani, D., Tewari, H. K., & John, N. (2004). Human resources and infrastructure for eye care in India: current status. National medical journal of India, 17(3), 128-134.

    CAS  PubMed  Google Scholar 

  7. Roy, R., Lobo, A., Pal, B. P., Oliveira, C. M., Raman, R., & Sharma, T. (2014). Automated diabetic retinopathy imaging in Indian eyes: A pilot study. Indian journal of ophthalmology, 62(12), 1121. https://doi.org/10.4103/0301-4738.149129

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lalithadevi, B., & Krishnaveni, S. (2022). Detection of diabetic retinopathy and related retinal disorders using fundus images based on deep learning and image processing techniques: A comprehensive review. Concurrency and Computation: Practice and Experience, e7032https://doi.org/10.1002/cpe.7032

  9. Joseph, L. P., Joseph, E. A., & Prasad, R. (2022). Explainable diabetes classification using hybrid Bayesian-optimized TabNet architecture. Computers in Biology and Medicine, 151, 106178.

    Article  PubMed  Google Scholar 

  10. Jahmunah, V., Ng, E. Y. K., Tan, R. S., Oh, S. L., & Acharya, U. R. (2022). Explainable detection of myocardial infarction using deep learning models with Grad-CAM technique on ECG signals. Computers in Biology and Medicine, 146, 105550.

    Article  CAS  PubMed  Google Scholar 

  11. Ren, Z., Qian, K., Dong, F., Dai, Z., Nejdl, W., Yamamoto, Y., & Schuller, B. W. (2022). Deep attention-based neural networks for explainable heart sound classification. Machine Learning with Applications, 100322.

  12. Alicioglu, G., & Sun, B. (2022). A survey of visual analytics for Explainable Artificial Intelligence methods. Computers & Graphics, 102, 502-520.

    Article  Google Scholar 

  13. Kumari, S., Kumar, D., & Mittal, M. (2021). An ensemble approach for classification and prediction of diabetes mellitus using soft voting classifier. International Journal of Cognitive Computing in Engineering, 2, 40-46.

    Article  Google Scholar 

  14. Meena, J., & Hasija, Y. (2022). Application of explainable artificial intelligence in the identification of Squamous Cell Carcinoma biomarkers. Computers in Biology and Medicine, 146, 105505.

    Article  CAS  PubMed  Google Scholar 

  15. Magesh, P. R., Myloth, R. D., & Tom, R. J. (2020). An explainable machine learning model for early detection of Parkinson's disease using LIME on DaTSCAN imagery. Computers in Biology and Medicine, 126, 104041.

    Article  CAS  PubMed  Google Scholar 

  16. Islam, M. S., Awal, M. A., Laboni, J. N., Pinki, F. T., Karmokar, S., Mumenin, K. M., ... & Mirjalili, S. (2022). HGSORF: Henry Gas Solubility Optimization-based Random Forest for C-Section prediction and XAI-based cause analysis. Computers in Biology and Medicine, 105671.

  17. Hassan, M. R., Islam, M. F., Uddin, M. Z., Ghoshal, G., Hassan, M. M., Huda, S., & Fortino, G. (2022). Prostate cancer classification from ultrasound and MRI images using deep learning based Explainable Artificial Intelligence. Future Generation Computer Systems, 127, 462-472.

    Article  Google Scholar 

  18. Kohoutová, L., Heo, J., Cha, S., Lee, S., Moon, T., Wager, T. D., & Woo, C. W. (2020). Toward a unified framework for interpreting machine-learning models in neuroimaging. Nature protocols, 15(4), 1399-1435.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Amparore, E., Perotti, A., & Bajardi, P. (2021). To trust or not to trust an explanation: using LEAF to evaluate local linear XAI methods. PeerJ Computer Science, 7, e479.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dikshit, A., & Pradhan, B. (2021). Interpretable and explainable AI (XAI) model for spatial drought prediction. Science of the Total Environment, 801, 149797.

    Article  CAS  PubMed  Google Scholar 

  21. Kollias, A. N., & Ulbig, M. W. (2010). Diabetic retinopathy: early diagnosis and effective treatment. Deutsches Arzteblatt International, 107(5), 75.

    PubMed  PubMed Central  Google Scholar 

  22. Attiku, Y., He, Y., Nittala, M. G., & Sadda, S. R. (2021). Current status and future possibilities of retinal imaging in diabetic retinopathy care applicable to low-and medium-income countries. Indian Journal of Ophthalmology, 69(11), 2968.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Whitley, E., & Ball, J. (2002). Statistics review 4: sample size calculations. Critical care, 6, 1-7

    Google Scholar 

  24. Aldington, S. J., Kohner, E. M., Meuer, S., Klein, R., & Sjølie, A. K. (1995). Methodology for retinal photography and assessment of diabetic retinopathy: the EURODIAB IDDM complications study. Diabetologia, 38(4), 437–444. https://doi.org/10.1007/BF00410281

  25. Solomon, S. D., & Goldberg, M. F. (2019). ETDRS grading of diabetic retinopathy: still the gold standard?. Ophthalmic research, 62(4), 190-195.

    Article  PubMed  Google Scholar 

  26. Lechner, J., O'Leary, O. E., & Stitt, A. W. (2017). The pathology associated with diabetic retinopathy. Vision research, 139, 7-14.

    Article  PubMed  Google Scholar 

  27. Eszes, D. J., Szabó, D. J., Russell, G., Kirby, P., Paulik, E., Nagymajtényi, L., ... & Petrovski, B. É. (2016). Diabetic retinopathy screening using telemedicine tools: pilot study in Hungary. Journal of Diabetes Research, 2016. https://doi.org/10.1155/2016/4529824

  28. Obasanmi, G., Lois, N., Armstrong, D., Lavery, N. J., Hombrebueno, J. R., Lynch, A., ... & Xu, H. (2020). Circulating leukocyte alterations and the development/progression of diabetic retinopathy in type 1 diabetic patients-a pilot study. Current Eye Research, 45(9), 1144–1154. https://doi.org/10.1080/02713683.2020.1718165

  29. Wang, J., Li, W., Wang, C., Wang, L., He, T., Hu, H., ... & Chen, L. (2020). Enterotype bacteroides is associated with a high risk in patients with diabetes: a pilot study. Journal of Diabetes Research2020. https://doi.org/10.1155/2020/6047145

  30. Sen, S., & Yildirim, I. (2022). A tutorial on how to conduct meta-analysis with IBM SPSS statistics. Psych, 4(4), 640-667.

    Article  Google Scholar 

  31. Allen, P., Bennett, K., & Heritage, B. (2014). SPSS statistics version 22: A practical guide. Cengage Learning Australia.

  32. Sulaiman, A. S. M., & Shabri, A. (2021). Forecasting carbon dioxide emissions for Malaysia using grey model with Cramer’s rule. Malaysian J. Fundam. Appl. Sci, 17, 437-445.

    Article  Google Scholar 

  33. Cook, G. B., & Watson, F. R. (1968). Events in the natural history of prostate cancer: using salvage curves, mean age distributions and contingency coefficients. The Journal of Urology, 99(1), 87-96.

    Article  CAS  PubMed  Google Scholar 

  34. Sivaprasad, S., Sahasranamam, V. I., George, S., Sadanandan, R., Gopal, B., Premnazir, L., ... & Netuveli, G. (2021). Burden of Diabetic Retinopathy amongst People with Diabetes Attending Primary Care in Kerala: Nayanamritham Project. Journal of Clinical Medicine, 10(24), 5903. https://doi.org/10.3390/jcm10245903

  35. Lund, S. H., Aspelund, T., Kirby, P., Russell, G., Einarsson, S., Palsson, O., & Stefánsson, E. (2016). Individualised risk assessment for diabetic retinopathy and optimisation of screening intervals: a scientific approach to reducing healthcare costs. British Journal of Ophthalmology, 100(5), 683-687.

    Article  CAS  PubMed  Google Scholar 

  36. Chen, Y. W., Wang, Y. Y., Zhao, D., Yu, C. G., Xin, Z., Cao, X., ... & Yang, J. K. (2015). High prevalence of lower extremity peripheral artery disease in type 2 diabetes patients with proliferative diabetic retinopathy. PloS One, 10(3), e0122022. https://doi.org/10.1371/journal.pone.0122022

  37. Gilbert, C., Gordon, I., Mukherjee, C. R., & Govindhari, V. (2020). Guidelines for the prevention and management of diabetic retinopathy and diabetic eye disease in India: a synopsis. Indian journal of ophthalmology, 68(Suppl 1), S63.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Schiel, R., Bambauer, R., & Steveling, A. (2018). Technology in Diabetes Treatment: update and future. Artificial organs, 42(11), 1017-1027.

    Article  PubMed  Google Scholar 

  39. Fong, D. S., Aiello, L., Gardner, T. W., King, G. L., Blankenship, G., Cavallerano, J. D., ... & American Diabetes Association. (2004). Retinopathy in diabetes. Diabetes Care, 27(suppl_1), s84–s87. https://doi.org/10.2337/diacare.26.2007.S99

  40. Bain, S. C., Klufas, M. A., Ho, A., & Matthews, D. R. (2019). Worsening of diabetic retinopathy with rapid improvement in systemic glucose control: a review. Diabetes, Obesity and Metabolism, 21(3), 454–466. https://doi.org/10.1111/dom.13538

  41. Tapp, R. J., Shaw, J. E., Harper, C. A., De Courten, M. P., Balkau, B., McCarty, D. J., ... & AusDiab Study Group. (2003). The prevalence of and factors associated with diabetic retinopathy in the Australian population. Diabetes Care, 26(6), 1731–1737. https://doi.org/10.2337/diacare.26.6.1731

  42. Jingi, A. M., Tankeu, A. T., Ateba, N. A., & Noubiap, J. J. (2017). Mechanism of worsening diabetic retinopathy with rapid lowering of blood glucose: the synergistic hypothesis. BMC Endocrine Disorders, 17(1), 1–4. https://doi.org/10.1186/s12902-017-0213-3

  43. Zhao, C., Wang, W., Xu, D., Li, H., Li, M., & Wang, F. (2014). Insulin and risk of diabetic retinopathy in patients with type 2 diabetes mellitus: data from a meta-analysis of seven cohort studies. Diagnostic Pathology, 9(1), 1–7. https://doi.org/10.1186/1746-1596-9-130

  44. Gupta, A., Delhiwala, K. S., Raman, R. P., Sharma, T., Srinivasan, S., & Kulothungan, V. (2016). Failure to initiate early insulin therapy–A risk factor for diabetic retinopathy in insulin users with Type 2 diabetes mellitus: sankara Nethralaya-Diabetic Retinopathy Epidemiology and Molecular Genetics Study (SN-DREAMS, Report number 35). Indian Journal of Ophthalmology, 64(6), 440. https://doi.org/10.4103/0301-4738.187668

  45. Preti, R. C., Iovino, C., Abalem, M. F., Garcia, R., Dos Santos, H. N. V., Sakuno, G., ... & Sarraf, D. (2021). Prevalence of focal inner, middle, and combined retinal thinning in diabetic patients and its relationship with systemic and ocular parameters. Translational Vision Science & Technology, 10(2), 26–26. https://doi.org/10.1167/tvst.10.2.26

  46. Shrestha, N. (2021). Factor analysis as a tool for survey analysis. American Journal of Applied Mathematics and Statistics, 9(1), 4-11.

    Article  Google Scholar 

  47. Peng, J., Zou, K., Zhou, M., Teng, Y., Zhu, X., Zhang, F., & Xu, J. (2021). An explainable artificial intelligence framework for the deterioration risk prediction of hepatitis patients. Journal of Medical Systems, 45(5), 1-9.

    Article  Google Scholar 

  48. Adak, A., Pradhan, B., Shukla, N., & Alamri, A. (2022). Unboxing deep learning model of food delivery service reviews using explainable artificial intelligence (XAI) technique. Foods, 11(14), 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all participants and our institution SRMIST in this study. And we thank the doctors and clinical supporting faculties for their support in fundus image acquisition and disease severity detection.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. B.Lalithadevi performed data collection, statistical analysis, preparation of manuscript, model development with shap analysis and interpretation of the results. S.Krishnaveni involved in study design, reviewing, editing the manuscript and participated in the result interpretation. Fundus images acquisition and disease severity grading were done by J.Samuel Cornelius Gnanadurai. All authors read and approved the final manuscript.

Corresponding author

Correspondence to B. Lalithadevi.

Ethics declarations

Ethics approval

The procedures used in this study adhere to the tenets of the Declaration of Helsinki. This study was approved by the Institutional Ethics Committee (IEC) and was conducted at SRM Medical College Hospital and Research Centre, Kattankulathur according to the guidelines(Approval no/8377).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Consent to publish

Patients signed informed consent regarding publishing their data and photographs.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lalithadevi, B., Krishnaveni, S. & Gnanadurai, J.S.C. A Feasibility Study of Diabetic Retinopathy Detection in Type II Diabetic Patients Based on Explainable Artificial Intelligence. J Med Syst 47, 85 (2023). https://doi.org/10.1007/s10916-023-01976-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-023-01976-7

Keywords

Navigation