Skip to main content
Log in

REBOA Zone Estimation from the Body Surface Using Semantic Segmentation

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Resuscitative endovascular balloon occlusion of the aorta (REBOA) is an endovascular procedure for hemorrhage control. In REBOA, the balloon must be placed in the precise place, but it may be performed without X-ray fluoroscopy. This study aimed to estimate the REBOA zones from the body surface using deep learning for safe balloon placement. A total of 198 abdominal computed tomography (CT) datasets containing the regions of the REBOA zones were collected from open data libraries. Then, depth images of the body surface generated from the CT datasets and the images corresponding to the zones were labeled for deep learning training and validation. DeepLabV3+, a deep learning semantic segmentation model, was employed to estimate the zones. We used 176 depth images as training data and 22 images as validation data. A nine-fold cross-validation was performed to generalize the performance of the network. The median Dice coefficients for Zones 1-3 were 0.94 (inter-quarter range: 0.90–0.96), 0.77 (0.60–0.86), and 0.83 (0.74–0.89), respectively. The median displacements of the zone boundaries were 11.34 mm (5.90–19.45), 11.40 mm (4.88–20.23), and 14.17 mm (6.89–23.70) for the boundary between Zones 1 and 2, between Zones 2 and 3, and between Zone 3 and out of zone, respectively. This study examined the feasibility of REBOA zone estimation from the body surface only using deep learning-based segmentation without aortography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Stannard, A., Eliason, J. L., & Rasmussen, T. E. (2011). Resuscitative endovascular balloon occlusion of the aorta (REBOA) as an adjunct for hemorrhagic shock. J Trauma, 71(6), 1869-1872.

    PubMed  Google Scholar 

  2. Tibbits, E. M., Hoareau, G. L., Simon, M. A., Davidson, A. J., DeSoucy, E. S., Faulconer, E. R., et al. (2018). Location is everything: The hemodynamic effects of REBOA in Zone 1 versus Zone 3 of the aorta. J Trauma Acute Care Surg, 85(1), 101-107.

    Article  PubMed  Google Scholar 

  3. Bekdache, O., Paradis, T., Shen, Y. B. H., Elbahrawy, A., Grushka, J., Deckelbaum, D., et al. (2019). Resuscitative endovascular balloon occlusion of the aorta (REBOA): indications: advantages and challenges of implementation in traumatic non-compressible torso hemorrhage. Trauma Surg Acute Care Open, 4(1), e000262.

    Article  PubMed  PubMed Central  Google Scholar 

  4. MacTaggart, J. N., Poulson, W. E., Akhter, M., Seas, A., Thorson, K., Phillips, N. Y., et al. (2016). Morphometric roadmaps to improve accurate device delivery for fluoroscopy-free resuscitative endovascular balloon occlusion of the aorta. J Trauma Acute Care Surg, 80(6), 941-946.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pezy, P., Flaris, A. N., Prat, N. J., Cotton, F., Lundberg, P. W., Caillot, J. L., et al. (2017). Fixed-Distance Model for Balloon Placement During Fluoroscopy-Free Resuscitative Endovascular Balloon Occlusion of the Aorta in a Civilian Population. JAMA Surg, 152(4), 351-358.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Olsen, M. H., Thonghong, T., Sondergaard, L., & Moller, K. (2020). Standardized distances for placement of REBOA in patients with aortic stenosis. Sci Rep, 10(1), 13410.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Hesamian, M. H., Jia, W., He, X., & Kennedy, P. (2019). Deep Learning Techniques for Medical Image Segmentation: Achievements and Challenges. J Digit Imaging, 32(4), 582-596.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., & Garcia-Rodriguez, J. (2017). A Review on Deep Learning Techniques Applied to Semantic Segmentation. https://doi.org/10.48550/arXiv.1704.06857

  9. Chandra, S., Tsogkas, S., & Kokkinos, I. (2015). Accurate Human-Limb Segmentation in RGB-D Images for Intelligent Mobility Assistance Robots. 2015 IEEE Int Conf  Com Vision Workshop (ICCVW), pp. 436-442.

  10. Liciotti, D., Paolanti, M., Pietrini, R., Frontoni, E., & Zingaretti, P. (2018). Convolutional Networks for Semantic Heads Segmentation using Top-View Depth Data in Crowded Environment. 2018 24th Int Conf Pattern Recog (ICPR), pp. 1384-1389.

  11. Moen, T. R., Chen, B., Holmes, D. R., 3rd, Duan, X., Yu, Z., Yu, L., et al. (2021). Low-dose CT image and projection dataset. Med Phys, 48(2), 902-911.

    Article  PubMed  Google Scholar 

  12. Heller, N., Isensee, F., Maier-Hein, K. H., Hou, X., Xie, C., Li, F., et al. (2021). The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging: Results of the KiTS19 challenge. Med Image Anal, 67, 101821.

    Article  PubMed  Google Scholar 

  13. Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J. C., Pujol, S., et al. (2012). 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging, 30(9), 1323-1341.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., & Adam, H. (2018). Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. ECCV. https://doi.org/10.48550/arXiv.1802.02611.

  15. Everingham, M., Van~Gool, L., Williams, C. K. I., Winn, J., & Zisserman, A. (2012). The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results. pascal-voc-2012.

  16. Bauer, A., Nakajima, S., & Muller, K. R. (2017). Efficient Exact Inference With Loss Augmented Objective in Structured Learning. IEEE Trans Neural Netw Learn Syst, 28(11), 2566-2579.

    Article  PubMed  Google Scholar 

  17. Dice, L. R. (1945). Measures of the Amount of Ecologic Association Between Species. Ecology, 26(3), 297-302.

    Article  Google Scholar 

  18. Sorenson, T. (1948). A Method of Establishing Groups of Equal Amplitude in Plant Sociology Based on Similarity of Species Content and Its Application to Analyses of the Vegetation on Danish Commons. Biologiske skrifter, 5, 1-34.

    Google Scholar 

  19. Wang, J., & Liu, X. (2021). Medical image recognition and segmentation of pathological slices of gastric cancer based on Deeplab v3+ neural network. Comput Methods Programs Biomed, 207, 106210.

    Article  PubMed  Google Scholar 

  20. El-Bana, S., Al-Kabbany, A., & Sharkas, M. (2020). A Two-Stage Framework for Automated Malignant Pulmonary Nodule Detection in CT Scans. Diagnostics, 10(3), 131.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Meyer, D. E., Mont, M. T., Harvin, J. A., Kao, L. S., Wade, C. E., & Moore, L. J. (2020). Catheter distances and balloon inflation volumes for the ER-REBOA catheter: A prospective analysis. Am J Surg, 219(1), 140-144.

    Article  PubMed  Google Scholar 

  22. Stannard, A., Morrison, J. J., Sharon, D. J., Eliason, J. L., & Rasmussen, T. E. (2013). Morphometric analysis of torso arterial anatomy with implications for resuscitative aortic occlusion. J Trauma Acute Care Surg, 75(2 Suppl 2), S169-172.

    Article  PubMed  Google Scholar 

  23. Khan, S. H., Hayat, M., Bennamoun, M., Sohel, F. A., & Togneri, R. (2018). Cost-Sensitive Learning of Deep Feature Representations From Imbalanced Data. IEEE Trans Neural Netw Learn Syst, 29(8), 3573-3587.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was partly supported by a Japan Society for the Promotion of Science (JSPS) KAKENHI Grant (No. 22K18217).

Author information

Authors and Affiliations

Authors

Contributions

Takeshi Takata, Kentaro Yamada, Masayoshi Yamamoto, and Hiroshi Kondo conceived the idea of the study. Takeshi Takata performed material preparation, data collection, and analysis. Takeshi Takata and Kentaro Yamada wrote the first draft of the main manuscript text. Masayoshi Yamamoto and Hiroshi Kondo commented on the draft. All authors reviewed the manuscript.

Corresponding author

Correspondence to Takeshi Takata.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takata, T., Yamada, K., Yamamoto, M. et al. REBOA Zone Estimation from the Body Surface Using Semantic Segmentation. J Med Syst 47, 42 (2023). https://doi.org/10.1007/s10916-023-01938-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-023-01938-z

Keywords

Navigation