Skip to main content

Advertisement

Log in

Reviewing Machine Learning and Image Processing Based Decision-Making Systems for Breast Cancer Imaging

  • Image & Signal Processing
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Breast cancer (BC) is the leading cause of death among women worldwide. It affects in general women older than 40 years old. Medical images analysis is one of the most promising research areas since it provides facilities for diagnosis and decision-making of several diseases such as BC. This paper conducts a Structured Literature Review (SLR) of the use of Machine Learning (ML) and Image Processing (IP) techniques to deal with BC imaging. A set of 530 papers published between 2000 and August 2019 were selected and analyzed according to ten criteria: year and publication channel, empirical type, research type, medical task, machine learning techniques, datasets used, validation methods, performance measures and image processing techniques which include image pre-processing, segmentation, feature extraction and feature selection. Results showed that diagnosis was the most used medical task and that Deep Learning techniques (DL) were largely used to perform classification. Furthermore, we found out that classification was the most ML objective investigated followed by prediction and clustering. Most of the selected studies used Mammograms as imaging modalities rather than Ultrasound or Magnetic Resonance Imaging with the use of public or private datasets with MIAS as the most frequently investigated public dataset. As for image processing techniques, the majority of the selected studies pre-process their input images by reducing the noise and normalizing the colors, and some of them use segmentation to extract the region of interest with the thresholding method. For feature extraction, we note that researchers extracted the relevant features using classical feature extraction techniques (e.g. Texture features, Shape features, etc.) or DL techniques (e. g. VGG16, VGG19, ResNet, etc.), and finally few papers used feature selection techniques in particular the filter methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Z. Metelko et al., “Pergamon THE WORLD HEALTH ORGANIZATION QUALITY OF LIFE ASSESSMENT ( WHOQOL ): POSITION PAPER FROM THE WORLD HEALTH ORGANIZATION,” vol. 41, no. 10, 1995.

  2. A. Bish, A. Ramirez, C. Burgess, and M. Hunter, “Understanding why women delay in seeking help for breast cancer symptoms B,” vol. 58, pp 321–326, 2005.

  3. S. U. Khan, N. Islam, Z. Jan, I. U. Din, A. Khan, and Y. Faheem, “An e-Health care services framework for the detection and classification of breast cancer in breast cytology images as an IoMT application,” Futur. Gener. Comput. Syst., vol. 98, pp 286–296, 2019.

    Article  Google Scholar 

  4. B. Lauby-Secretan, C. Scoccianti, and D. et al Loomis, “International Agency for Research on Cancer Handbook Working Group. Breast-Cancer Screening--Viewpoint of the IARC Working Group,” N. Engl. J. Med., vol. 372, no. 24, pp 2353–2358, 2015.

  5. M. G. Marmot, D. G. Altman, D. A. Cameron, J. A. Dewar, S. G. Thompson, and M. Wilcox, “The benefits and harms of breast cancer screening: An independent review,” Br. J. Cancer, vol. 108, no. 11, pp 2205–2240, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. M. Tarique, F. ElZahra, A. Hateem, and M. Mohammad, “Fourier Transform Based Early Detection of Breast Cancer by Mammogram Image Processing,” J. Biomed. Eng. Med. Imaging, vol. 2, no. 4, 2015.

  7. F. Sadoughi, Z. Kazemy, F. Hamedan, L. Owji, M. Rahmanikatigari, and T. T. Azadboni, “Artificial intelligence methods for the diagnosis of breast cancer by image processing: A review,” Breast Cancer Targets Ther., vol. 10, pp 219–230, 2018.

    Article  Google Scholar 

  8. M. Saha, R. Mukherjee, and C. Chakraborty, “Computer-aided diagnosis of breast cancer using cytological images: A systematic review,” Tissue Cell, vol. 48, no. 5, pp 461–474, 2016.

    Article  PubMed  Google Scholar 

  9. A. Al Nahid and Y. Kong, “Involvement of Machine Learning for Breast Cancer Image Classification: A Survey,” Comput. Math. Methods Med., vol. 2017, no. i, 2017.

  10. A. Idri, I. Chlioui, and B. El Ouassif, “A systematic map of data analytics in breast cancer,” ACM Int. Conf. Proceeding Ser., 2018.

  11. M. Hosni, I. Abnane, A. Idri, J. M. Carrillo de Gea, and J. L. Fernández Alemán, “Reviewing ensemble classification methods in breast cancer,” Comput. Methods Programs Biomed., vol. 177, pp 89–112, 2019.

    Article  PubMed  Google Scholar 

  12. E. Ouassif, A. Idri, M. Hosni, and A. Abran, “Classification techniques in breast cancer diagnosis: A systematic literature review,” Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization. 2020, Inpress

  13. H. Zerouaoui, A. Idri, and K. El Asnaoui, “Machine learning and image processing for breast cancer: A systematic Map,” pp 1–20.

  14. P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil, “Lessons from applying the systematic literature review process within the software engineering domain,” J. Syst. Softw., vol. 80, no. 4, pp 571–583, 2007.

    Article  Google Scholar 

  15. B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman, “Systematic literature reviews in software engineering - A systematic literature review,” Inf. Softw. Technol., vol. 51, no. 1, pp 7–15, 2009.

    Article  Google Scholar 

  16. A. Kofod-petersen, “How to do a structured literature review in computer science,” Researchgate, no. May 2015, pp 1–7, 2014.

  17. O. Olsen and P. C. Gøtzsche, “Cochrane review on screening for breast cancer with mammography,” Lancet, vol. 358, no. 9290, pp 1340–1342, 2001.

    Article  CAS  PubMed  Google Scholar 

  18. T. P. Carvalho, F. A. A. M. N. Soares, R. Vita, Francisco. R. da P., J. P. Basto, and S. G. S. Alcalá, “A systematic literature review of machine learning methods applied to predictive maintenance,” Comput. Ind. Eng., vol. 137, no. August, p. 106024, 2019.

  19. A. Idri, H. Benhar, J. L. Fernández-Alemán, and I. Kadi, “A systematic map of medical data preprocessing in knowledge discovery,” Comput. Methods Programs Biomed., vol. 162, pp 69–85, 2018.

    Article  CAS  PubMed  Google Scholar 

  20. C. Okoli and K. Schabram, “(Okoli, Schabram 2010 Sprouts) systematic literature reviews in IS research,” Work. Pap. Inf. Syst., vol. 10, no. 26, pp 10–26, 2010.

    Google Scholar 

  21. T. EL Idrissi, A. Idri, and Z. Bakkoury, “Systematic map and review of predictive techniques in diabetes self-management,” Int. J. Inf. Manage., vol. 46, no. May, pp 263–277, 2019.

    Article  Google Scholar 

  22. A. Rampun, H. Wang, B. Scotney, P. Morrow, and R. Zwiggelaar, “School of Computing , Ulster University , Coleraine , Northern Ireland , UK Department of Computer Science , Aberystwyth University , UK,” 2018 25th IEEE Int. Conf. Image Process., pp 2072–2076, 2018.

  23. P. Tonella, M. Torchiano, B. Du Bois, and T. Systä, “Empirical studies in reverse engineering: State of the art and future trends,” Empir. Softw. Eng., vol. 12, no. 5, pp 551–571, 2007.

    Article  Google Scholar 

  24. B. K. Singh, K. Verma, L. Panigrahi, and A. S. Thoke, “Integrating radiologist feedback with computer aided diagnostic systems for breast cancer risk prediction in ultrasonic images: An experimental investigation in machine learning paradigm,” Expert Syst. Appl., vol. 90, pp 209–223, 2017.

    Article  Google Scholar 

  25. K. Mendel, H. Li, D. Sheth, and M. Giger, “Transfer Learning From Convolutional Neural Networks for Computer-Aided Diagnosis: A Comparison of Digital Breast Tomosynthesis and Full-Field Digital Mammography,” Acad. Radiol., vol. 26, no. 6, pp 735–743, 2019.

    Article  PubMed  Google Scholar 

  26. M. V Valueva, N. N. Nagornov, P. A. Lyakhov, G. V Valuev, and N. I. Chervyakov, “ScienceDirect Application of the residue number system to reduce hardware costs of the convolutional neural network implementation,” Math. Comput. Simul., vol. 177, pp 232–243, 2020.

    Article  Google Scholar 

  27. Z. Zhang, M. Lyons, M. Schuster, S. Akamatsu, and F.-S. Cedex, “Comparison Between Geometry-Based and Gabor-Wavelets-Based Facial Expression Recognition Using Multi-Layer Perceptron,” 2004.

  28. W. Train, D. Architectures, I. Representations, and S. Features, Learning Deep Architectures for AI By Yoshua Bengio, vol. 2, no. 1. 2009.

  29. T. Cogan, M. Cogan, and L. Tamil, “RAMS: Remote and automatic mammogram screening,” Comput. Biol. Med., vol. 107, pp 18–29, 2019.

    Article  PubMed  Google Scholar 

  30. S. Guan and M. Loew, “Breast cancer detection using transfer learning in convolutional neural networks,” Proc. - Appl. Imag. Pattern Recognit. Work., vol. 2017-Octob, pp 1–8, 2018.

    Google Scholar 

  31. R. C. Prati, G. E. A. P. A. Batista, and M. C. Monard, “A survey on graphical methods for classification predictive performance evaluation,” IEEE Trans. Knowl. Data Eng., vol. 23, no. 11, pp 1601–1618, 2011.

    Article  Google Scholar 

  32. N. Esfandiari, M. R. Babavalian, A. M. E. Moghadam, and V. K. Tabar, “Knowledge discovery in medicine: Current issue and future trend,” Expert Syst. Appl., vol. 41, no. 9, pp 4434–4463, 2014.

    Article  Google Scholar 

  33. M. I. Razzak, S. Naz, and A. Zaib, “Deep Learning for Medical Image Processing: Overview , Challenges and the Future.”

  34. D. Abdelhafiz, C. Yang, R. Ammar, and S. Nabavi, “Deep convolutional neural networks for mammography: Advances, challenges and applications,” BMC Bioinformatics, vol. 20, no. Suppl 11, 2019.

  35. M. A. Al-antari, M. A. Al-masni, M. T. Choi, S. M. Han, and T. S. Kim, “A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification,” Int. J. Med. Inform., vol. 117, no. June, pp 44–54, 2018.

    Article  PubMed  Google Scholar 

  36. G. Kumar and P. K. Bhatia, “A detailed review of feature extraction in image processing systems,” Int. Conf. Adv. Comput. Commun. Technol. ACCT, pp 5–12, 2014.

  37. H. Lin, H. Chen, S. Graham, Q. Dou, N. Rajpoot, and P.-A. Heng, “Fast ScanNet: Fast and Dense Analysis of Multi-Gigapixel Whole-Slide Images for Cancer Metastasis Detection,” IEEE Trans. Med. Imaging, vol. 38, no. 8, pp 1948–1958, 2019.

    Article  PubMed  Google Scholar 

  38. Y. Hu, J. Li, and Z. Jiao, “Mammographic mass detection based on saliency with deep features,” ACM Int. Conf. Proceeding Ser., vol. 19-21-Augu, pp 292–297, 2016.

    Google Scholar 

  39. A. R. Saikia, K. Bora, L. B. Mahanta, and A. K. Das, “Comparative assessment of CNN architectures for classification of breast FNAC images,” Tissue Cell, vol. 57, pp 8–14, 2019.

    Article  PubMed  Google Scholar 

  40. C. Li, X. Wang, W. Liu, L. J. Latecki, B. Wang, and J. Huang, “Weakly supervised mitosis detection in breast histopathology images using concentric loss,” Med. Image Anal., vol. 53, pp 165–178, 2019.

    Article  PubMed  Google Scholar 

  41. J. Wang et al., “Detecting Cardiovascular Disease from Mammograms with Deep Learning,” IEEE Trans. Med. Imaging, vol. 36, no. 5, pp 1172–1181, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  42. G. Carneiro, J. Nascimento, and A. P. Bradley, Deep Learning Models for Classifying Mammogram Exams Containing Unregistered Multi-View Images and Segmentation Maps of Lesions, 1st ed. Elsevier Inc., 2017.

  43. N. Dhungel, G. Carneiro, and A. P. Bradley, “Deep learning and structured prediction for the segmentation of mass in mammograms,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9349, pp 605–612, 2015.

    Google Scholar 

  44. A. Rodríguez-Cristerna, W. Gómez-Flores, and W. C. de Albuquerque Pereira, “A computer-aided diagnosis system for breast ultrasound based on weighted BI-RADS classes,” Comput. Methods Programs Biomed., vol. 153, pp 33–40, 2018.

    Article  PubMed  Google Scholar 

  45. P. Herent et al., “Detection and characterization of MRI breast lesions using deep learning,” Diagn. Interv. Imaging, vol. 100, no. 4, pp 219–225, 2019.

    Article  CAS  PubMed  Google Scholar 

  46. R. K. Samala, H. P. Chan, L. Hadjiiski, M. A. Helvie, C. D. Richter, and K. H. Cha, “Breast cancer diagnosis in digital breast tomosynthesis: Effects of training sample size on multi-stage transfer learning using deep neural nets,” IEEE Trans. Med. Imaging, vol. 38, no. 3, pp 686–696, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  47. J. R. Vergara and P. A. Estévez, “A review of feature selection methods based on mutual information,” Neural Comput. Appl., vol. 24, no. 1, pp 175–186, 2014.

    Article  Google Scholar 

  48. B. K. Singh, K. Verma, and A. S. Thoke, “Fuzzy cluster based neural network classifier for classifying breast tumors in ultrasound images,” Expert Syst. Appl., vol. 66, pp 114–123, 2016.

    Article  Google Scholar 

  49. T. K. Avramov, W. Bothell, D. Si, and W. Bothell, “Comparison of Feature Reduction Methods and Machine Learning Models for Breast Cancer Diagnosis,” pp 69–74, 2017.

  50. A. F. M. Agarap, “On breast cancer detection: An application of machine learning algorithms on the Wisconsin diagnostic dataset,” ACM Int. Conf. Proceeding Ser., no. 1, pp 5–9, 2018.

  51. M. Ezzat and A. Idri, Reviewing Data Analytics Techniques in Breast Cancer Treatment, vol. 2. Springer International Publishing, 2020.

  52. X. Xiong, Y. Kim, Y. Baek, D. W. Rhee, and S. H. Kim, “Analysis of breast cancer using data mining & statistical techniques,” Proc. - Sixth Int. Conf. Softw. Eng., Artif. Intell. Netw. Parallel/Distributed Comput. First ACIS Int. Work. Self-Assembling Wirel. Netw., SNPD/SAWN 2005, vol. 2005, pp 82–87, 2005.

    Google Scholar 

  53. A. C. Patrocinio and H. Schiabel, “Classifying clusters of microcalcifications in digitized mammograms by artificial neural network,” Brazilian Symp. Comput. Graph. Image Process., vol. 2001-Janua, pp 266–272, 2001.

    Article  Google Scholar 

  54. N. Bayramoglu, J. Kannala, and J. Heikkila, “Deep learning for magnification independent breast cancer histopathology image classification,” Proc. - Int. Conf. Pattern Recognit., vol. 0, pp 2440–2445, 2016.

  55. Z. Hu, J. Tang, Z. Wang, K. Zhang, L. Zhang, and Q. Sun, “Deep learning for image-based cancer detection and diagnosis − A survey,” Pattern Recognit., vol. 83, pp 134–149, 2018.

    Article  Google Scholar 

  56. B. Gerazov and R. C. Conceicao, “Deep learning for tumour classification in homogeneous breast tissue in medical microwave imaging,” 17th IEEE Int. Conf. Smart Technol. EUROCON 2017 - Conf. Proc., no. July, pp 564–569, 2017.

  57. M. Bahl, R. Barzilay, A. Yedidia, N. Locascio, L. Yu, and C. Lehman, “BREAST IMAGING: Prediction of Pathologic Upgrade in High-Risk Breast Lesions Bahl et al,” Radiology, vol. 000, no. 0, pp 1–9, 2017.

  58. P. Mitra, C. A. Murthy, and S. K. Pal, “Unsupervised feature selection using feature similarity,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 3, pp 301–312, 2002.

    Article  Google Scholar 

  59. S. J. S. Gardezi, A. Elazab, B. Lei, and T. Wang, “Breast cancer detection and diagnosis using mammographic data: Systematic review,” J. Med. Internet Res., vol. 21, no. 7, pp 1–22, 2019.

    Article  Google Scholar 

  60. D. N. Ponraj, M. E. Jenifer, and J. S. Manoharan, “D.Narain Ponraj, M.Evangelin Jenifer, P. Poongodi, J.Samuel Manoharan.pdf,” vol. 2, no. 12, pp 656–664, 2011.

  61. C. Shen, Y. Gonzalez, L. Chen, S. B. Jiang, and X. Jia, “Intelligent Parameter Tuning in Optimization-Based Iterative CT Reconstruction via Deep Reinforcement Learning,” IEEE Trans. Med. Imaging, vol. 37, no. 6, pp 1430–1439, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  62. V. S. Kumar and D. Boulanger, “Automated Essay Scoring and the Deep Learning Black Box: How Are Rubric Scores Determined?,” Int. J. Artif. Intell. Educ., 2020.

  63. M. X. Ribeiro, A. J. M. Traina, C. Traina, and P. M. Azevedo-Marques, “An association rule-based method to support medical image diagnosis with efficiency,” IEEE Trans. Multimed., vol. 10, no. 2, pp 277–285, 2008.

    Article  Google Scholar 

  64. Y. Jiang, Z. Li, Y. Wang, and L. Zhang, “Joining associative classifier for medical images,” Proc. - HIS 2005 Fifth Int. Conf. Hybrid Intell. Syst., vol. 2005, no. 60373108, pp 367–372, 2005.

    Google Scholar 

  65. Y. Shachor and J. Goldberger, “A MIXTURE OF VIEWS NETWORK WITH APPLICATIONS TO THE CLASSIFICATION OF Hayit Greenspan Faculty of Engineering , Bar-Ilan University , Ramat-Gan , Israel Department of Biomedical Engineering , Tel Aviv University , Tel Aviv , Israel,” 2019 IEEE 16th Int. Symp. Biomed. Imaging (ISBI 2019), no. Isbi, pp 1065–1069, 2019.

  66. T. Nadu and T. Nadu, “MRI MAMMOGRAM IMAGE CLASSIFICATION USING ID3 ALGORITHM,” pp 1–5, 2003.

  67. S. P. Ngayarkanni, N. B. Kamal, and V. Thavavel, “Automatic detection and classification of cancerous masses in mammogram,” 2012 3rd Int. Conf. Comput. Commun. Netw. Technol. ICCCNT 2012, no. July, 2012.

  68. B. Bektas, I. E. Emre, E. Kartal, and S. Gulsecen, “Classification of Mammography Images by Machine Learning Techniques,” UBMK 2018 - 3rd Int. Conf. Comput. Sci. Eng., pp 580–585, 2018.

  69. H. Chougrad, H. Zouaki, and O. Alheyane, “Multi-label transfer learning for the early diagnosis of breast cancer,” Neurocomputing, no. xxxx, 2019.

  70. A. Ghosh, “Artificial Intelligence Using Open Source BI-RADS Data Exemplifying Potential Future Use,” J. Am. Coll. Radiol., vol. 16, no. 1, pp 64–72, 2019.

    Article  PubMed  Google Scholar 

  71. B. K. Singh, “Determining relevant biomarkers for prediction of breast cancer using anthropometric and clinical features: A comparative investigation in machine learning paradigm,” Biocybern. Biomed. Eng., vol. 39, no. 2, pp 393–409, 2019.

    Article  Google Scholar 

  72. Q. Zhang, S. Song, Y. Xiao, S. Chen, J. Shi, and H. Zheng, “Dual-mode artificially-intelligent diagnosis of breast tumours in shear-wave elastography and B-mode ultrasound using deep polynomial networks,” Med. Eng. Phys., vol. 64, no. xxxx, pp 1–6, 2019.

  73. M. G. Mini, “Neural network based classification of digitized mammograms,” Proc. 2nd Kuwait Conf. e-Services e-Systems, KCESS’11, pp 1–5, 2011.

  74. C. Ferri and R. Modroiu, “An experimental comparison of performance measures for classification,” Pattern Recognit. Lett., vol. 30, no. 1, pp 27–38, 2009.

    Article  Google Scholar 

  75. J. Davis and M. Goadrich, “The Relationship Between Precision-Recall and ROC Curves,” 2006.

  76. C. Muramatsu, T. Hara, T. Endo, and H. Fujita, “Breast mass classification on mammograms using radial local ternary patterns,” Comput. Biol. Med., vol. 72, pp 43–53, 2016.

    Article  PubMed  Google Scholar 

  77. Y. Gao, K. J. Geras, A. A. Lewin, and L. Moy, “New frontiers: An update on computer-aided diagnosis for breast imaging in the age of artificial intelligence,” Am. J. Roentgenol., vol. 212, no. 2, pp 300–307, 2019.

    Article  Google Scholar 

  78. R. A. Übersichtsarbeit, S. H. H. Astrid, and H. Stefan, “Breast Care Advantages and Disadvantages of Mammography Screening,” pp 199–207, 2011.

  79. R. M. Rangayyan, F. J. Ayres, and J. E. Leo Desautels, “A review of computer-aided diagnosis of breast cancer: Toward the detection of subtle signs,” J. Franklin Inst., vol. 344, no. 3–4, pp 312–348, 2007.

    Article  Google Scholar 

  80. N. Dehghan Khalilabad and H. Hassanpour, “Employing image processing techniques for cancer detection using microarray images,” Comput. Biol. Med., vol. 81, pp 139–147, 2017.

    Article  PubMed  Google Scholar 

  81. I. Fondón et al., “Automatic classification of tissue malignancy for breast carcinoma diagnosis,” Comput. Biol. Med., vol. 96, pp 41–51, 2018.

    Article  PubMed  Google Scholar 

  82. S. K. Wajid, A. Hussain, and K. Huang, “Three-Dimensional Local Energy-Based Shape Histogram (3D-LESH): A Novel Feature Extraction Technique,” Expert Syst. Appl., vol. 112, pp 388–400, 2018.

    Article  Google Scholar 

  83. A. Idri et al., “PT US CR,” 2018.

  84. J. Y. Yeh and S. Chan, “CNN-based CAD for breast cancer classification in digital breast tomosynthesis,” ACM Int. Conf. Proceeding Ser., pp 26–30, 2018.

  85. Y. Jiang, L. Chen, H. Zhang, and X. Xiao, “Breast cancer histopathological image classification using convolutional neural networks with small SE-ResNet module,” PLoS One, vol. 14, no. 3, pp 1–21, 2019.

    Article  Google Scholar 

  86. Shallu and R. Mehra, “Breast cancer histology images classification: Training from scratch or transfer learning?,” ICT Express, vol. 4, no. 4, pp 247–254, 2018.

    Article  Google Scholar 

  87. R. Almajalid, J. Shan, Y. Du, and M. Zhang, “Development of a Deep-Learning-Based Method for Breast Ultrasound Image Segmentation,” Proc. - 17th IEEE Int. Conf. Mach. Learn. Appl. ICMLA 2018, pp 1103–1108, 2019.

  88. K. Xiao, Z. Wang, T. Xu, and T. Wan, “a Deep Learning Method for Detecting and Classifying Breast Cancer Metastases in Lymph Nodes on Histopathological Images,” pp 1–5, 2017.

  89. J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017-Janua, pp 6517–6525, 2017.

  90. M. A. Al-Masni et al., “Detection and classification of the breast abnormalities in digital mammograms via regional Convolutional Neural Network,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, pp 1230–1233, 2017.

  91. M. A. Al-masni et al., “Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system,” Comput. Methods Programs Biomed., vol. 157, pp 85–94, 2018.

    Article  PubMed  Google Scholar 

  92. A. Humeau-Heurtier, “Texture feature extraction methods: A survey,” IEEE Access, vol. 7, pp 8975–9000, 2019.

    Article  Google Scholar 

  93. A. Manduca et al., “Texture Features from Mammographic Images and Risk of Breast Cancer,” vol. 18, no. March, pp 837–846, 2009.

  94. D. V Fried et al., “Prognostic Value and Reproducibility of Pretreatment CT Texture Features in Stage III Non-Small Cell Lung Cancer,” Radiat. Oncol. Biol., vol. 90, no. 4, pp 834–842, 2014.

    Article  Google Scholar 

  95. M. Sasikala and N. Kumaravel, “A wavelet-based optimal texture feature set for classification of brain tumours,” vol. 32, no. 3, pp 198–205, 2008.

  96. S. Dara and P. Tumma, “Feature Extraction by Using Deep Learning: A Survey,” Proc. 2nd Int. Conf. Electron. Commun. Aerosp. Technol. ICECA 2018, no. Iceca, pp 1795–1801, 2018.

  97. S. H. Kassani, P. H. Kassani, M. J. Wesolowski, K. A. Schneider, and R. Deters, “Classification of Histopathological Biopsy Images Using Ensemble of Deep Learning Networks,” 2019.

  98. Z. Cao, L. Duan, G. Yang, T. Yue, and Q. Chen, “An experimental study on breast lesion detection and classification from ultrasound images using deep learning architectures,” BMC Med. Imaging, vol. 19, no. 1, pp 1–9, 2019.

    Article  Google Scholar 

  99. J. Torrents-Barrena, D. Puig, J. Melendez, and A. Valls, “Computer-aided diagnosis of breast cancer via Gabor wavelet bank and binary-class SVM in mammographic images,” J. Exp. Theor. Artif. Intell., vol. 28, no. 1–2, pp 295–311, 2016.

    Article  Google Scholar 

  100. P. Yadav and V. Jethani, “Breast thermograms analysisfor cancer detection using feature extraction and data mining technique,” ACM Int. Conf. Proceeding Ser., vol. 12-13-Augu, 2016.

  101. P. Alirezazadeh, B. Hejrati, A. Monsef-Esfahani, and A. Fathi, “Representation learning-based unsupervised domain adaptation for classification of breast cancer histopathology images,” Biocybern. Biomed. Eng., vol. 38, no. 3, pp 671–683, 2018.

    Article  Google Scholar 

  102. D. Kumar, C. Kumar, and M. Shao, “Cross-database mammographic image analysis through unsupervised domain adaptation,” Proc. - 2017 IEEE Int. Conf. Big Data, Big Data 2017, vol. 2018-Janua, pp 4035–4042, 2018.

    Google Scholar 

  103. E. Stoffel et al., “Distinction between phyllodes tumor and fibroadenoma in breast ultrasound using deep learning image analysis,” Eur. J. Radiol. Open, vol. 5, no. March, pp 165–170, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  104. R. Yan et al., “A Hybrid Convolutional and Recurrent Deep Neural Network for Breast Cancer Pathological Image Classification,” Proc. - 2018 IEEE Int. Conf. Bioinforma. Biomed. BIBM 2018, pp 957–962, 2019.

  105. L. Zhuo, J. Zheng, X. Li, F. Wang, B. Ai, and J. Qian, “A Genetic Algorithm Based Wrapper Feature Selection Method for Classification of Hyperspectral Images Using Support Vector Machine,” vol. 7147, pp 1–9, 2008.

  106. E. Deniz, A. Şengür, Z. Kadiroğlu, Y. Guo, V. Bajaj, and Ü. Budak, “Transfer learning based histopathologic image classification for breast cancer detection,” Heal. Inf. Sci. Syst., vol. 6, no. 1, 2018.

  107. M. A. Hedjazi, I. Kourbane, and Y. Genc, “Yaprak Sınıflandırma Üzerine: Derin Ö ˘ grenme ve Geleneksel Makine Ö ˘ grenme Yöntemlerinin Kar ¸ sıla ¸ stırılması On Identifying Leaves: A Comparison of CNN with Classical ML Methods,” pp 0–3, 2017.

  108. O. Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp 211–252, 2015.

    Article  Google Scholar 

  109. M. Muštra, M. Grgić, and K. Delač, “Breast density classification using multiple feature selection | klasifikacija dojki prema gustoći izborom značajki,” Automatika, vol. 53, no. 4, pp 362–372, 2012.

    Article  Google Scholar 

  110. Q. Xiong et al., “Multiparametric MRI-based radiomics analysis for prediction of breast cancers insensitive to neoadjuvant chemotherapy,” Clin. Transl. Oncol., no. 0123456789, 2019.

  111. A. G. Karegowda, A. S. Manjunath, G. Ratio, and C. F. Evaluation, “COMPARATIVE STUDY OF ATTRIBUTE SELECTION USING GAIN RATIO,” vol. 2, no. 2, pp 271–277, 2010.

Download references

Acknowledgements

This work was conducted under the research project “Machine Learning based Breast Cancer Diagnosis and Treatment”, 2020-2023. The authors would like to thank the Moroccan Ministry of Higher Education and Scientific Research, Digital Development Agency (ADD), CNRST, and UM6P for their support.

Availability of data and material

The list of the 530 papers including all required information to answer the RQs of this SLR is available upon request by email to the authors of this study.

Funding

This study was funded by Mohammed VI polytechnic university at Ben Guerir Morocco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Idri.

Ethics declarations

Conflicts of interest/competing interests

Not applicable.

Code availability

not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Image & Signal Processing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zerouaoui, H., Idri, A. Reviewing Machine Learning and Image Processing Based Decision-Making Systems for Breast Cancer Imaging. J Med Syst 45, 8 (2021). https://doi.org/10.1007/s10916-020-01689-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-020-01689-1

Keywords

Navigation