Skip to main content

Advertisement

Log in

Effect of multiscale PCA de-noising on EMG signal classification for diagnosis of neuromuscular disorders

  • Patient Facing Systems
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Different approaches have been applied for quantitative analysis of EMG signals. This study introduces the effect of Multiscale Principal Component Analysis (MSPCA) denoising method in ElectroMyoGram (EMG) signal classification. The effect of the MSPCA denoising method discussed on EMG signal classification. In addition, effect of Multiple Single Classification (MUSIC) feature extraction method presented and compared for the classification of EMG signals. The results were accomplished on the basis of EMG signal data to classify into normal, ALS or myopathic. Furthermore, total accuracy of classifiers such as k-Nearest Neighbor (k-NN), Artificial Neural Network (ANN) and Support Vector Machines (SVMs) were discussed. Significant results were found by using MSPCA denoising method. The comparisons between the developed classifiers were based on a number of scalar performances such as sensitivity, specificity, accuracy, F-measure and area under ROC curve (AUC). The results show that MSPCA de-noising has considerably increased the accuracy as compared to EMG data without MSPCA de-noising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. McGill, K. C., Optimal resolution of superimposed action potentials. IEEE Trans. Biomed. Eng. 49(7):640–650, 2002.

    Article  Google Scholar 

  2. Kimura, J., Electrodiagnosis in diseases of nerve and muscle: principle and practice, 3rd edition. Oxford University Press, Newyork, 2001.

    Google Scholar 

  3. Katsis, C. D., Goletis, Y., Likas, A., Fodiatis, D. I., and Sarmas, I., A novel method for automated EMG decomposition and MUAP classification. Artif. Intell. Med. 37(1):55–64, 2006.

    Article  Google Scholar 

  4. Loudon, G. H., Jones, N. B., and Sehmi, A. S., New signal processing techniques for the decomposition of EMG signals. Med. Biol. Eng. Comput. 30(6):591–599, 1992.

    Article  Google Scholar 

  5. Pattichis, C. S., and Pattichis, M. S., Time-scale analysis of motor unit action potentials. IEEE Trans. Biomed. Eng. 46(11):1320–1329, 1999.

    Article  Google Scholar 

  6. Begg, R., Lai, D. T. H., and Palaniswami, M., Computational intelligence in biomedical engineering. CRC Press, Boca Raton, 2008.

    MATH  Google Scholar 

  7. Subasi, A., Application of classical and model-based spectral methods to describe the state of alertness in EEG. J. Med. Syst. 29(5):473–486, 2005.

    Article  Google Scholar 

  8. Subasi, A., and Kiymik, M. K., Muscle Fatigue detection in EMG using time–frequency methods, ICA and neural networks. J. Med. Syst. 34(4):777–785, 2010.

    Article  Google Scholar 

  9. Schizas, C. N., Pattichis, C. S., and Middleton, L., Artificial neural nets in computer-aided macro motor unit potential classification. IEEE Eng. Med. Biol. Mag. 9(3):31–38, 1990.

    Article  Google Scholar 

  10. Güler, N. F., and Koçer, S., Use of support vector machines and neural network in diagnosis of neuromuscular disorders. J. Med. Syst. 29(3):271–284, 2005.

    Article  Google Scholar 

  11. Akben, S. B., Subasi, A., and Tuncel, D., Analysis of repetitive flash stimulation frequencies and record periods to detect migraine using artificial neural network. J. Med. Syst. 36(2):925–931, 2012.

    Article  Google Scholar 

  12. Koçer, S., Classification of Emg signals using neuro-fuzzy system and diagnosis of neuromuscular diseases. J. Med. Syst. 34(3):321–329, 2010.

    Article  Google Scholar 

  13. Huang, C. L., and Wang, C. J., A GA-based attribute selection and parameter optimization for support vector machine. Expert Syst. Appl. 31(2):231–240, 2006.

    Article  Google Scholar 

  14. Ho, S. Y., Shu, L. S., and Chen, J. H., Intelligent evolutionary algorithms for large parameter optimization problems. IEEE Trans. Evolut. 8(6):522–541, 2004.

    Article  Google Scholar 

  15. Reaz, M. B. I., Hussain, M. S., and Mohd-Yasin, F., Techniques of EMG signal analysis: detection, processing, classification and applications. Biol. Proced. Online 8:11–35, 2006.

    Article  Google Scholar 

  16. Subasi, A., Classification of EMG signals using combined features and soft computing. Appl. Soft Comput. 12(8):2188–2198, 2012.

    Article  Google Scholar 

  17. Subasi, A., Classification of EMG signals using PSO optimized SVM for diagnosis. Comput. Biol. Med. 43(5):576–586, 2013.

    Article  MathSciNet  Google Scholar 

  18. Subasi, A., Yilmaz, M., and Ozcalik, H. R., Classification of EMG signals using wavelet neural network. J. Neurosci. Methods 156(1–2):360–367, 2006.

    Article  Google Scholar 

  19. Nikolic, M., Findings and firing pattern analysis in controls and patients with myopathy and amytrophic lateral sclerosis. Faculty of Health Science, University of Copenhagen, Copenhagen, 2001.

    Google Scholar 

  20. Bakshi, B. R., Multiscale PCA with application to MSPC monitoring. AIChE J 44(77):1596–1610, 1998.

    Article  Google Scholar 

  21. Chawla, M. P. S., A comparative analysis of principal component and independent component techniques for electrocardiograms. Neural Comput Applic Springer-Verlag London Limited 18(6):539–556, 2009.

    Article  MathSciNet  Google Scholar 

  22. Hotelling, H., Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24(6):417–441, 1933.

    Article  Google Scholar 

  23. Joliffe, I. T., Principal component analysis, 2nd edition. Springer, New York, 2002.

    Google Scholar 

  24. Bakshi, B. R., Multiscale analysis and modeling using wavelets. J. Chemom. 13(3–4):415–434, 1999.

    Article  Google Scholar 

  25. Misra, M., Yue, H. H., Qin, S. J., and Ling, C., Multivariate process monitoring and fault diagnosis by multi-scale PCA. Comput. Chem. Eng. 26(9):1281–1293, 2002.

    Article  Google Scholar 

  26. Kotas, M., Application of projection pursuit based robust principal component analysis to ECG enhancement. Biomed Signal Process Control 1(4):289–298, 2006.

    Article  Google Scholar 

  27. Castells, F., Laguna, P., Sornmo, L., Bollmann, A., and Roig, J., Principal component analysis in ECG signal processing. EURASIP J Adv Signal Process 2007:98–119, 2007.

    Article  Google Scholar 

  28. Pisarenko, V. F., The retrieval of harmonics from a covariance function geophysics. J. R. Astron. Soc. 33(3):347–366, 1973.

    Article  MATH  Google Scholar 

  29. Schmidt, R. O., Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag 34(3):276–280, 1986.

    Article  Google Scholar 

  30. Bienvenu, G., and Kopp, L., Optimality of high resolution array processing using the eigensystem approach. IEEE Trans Acoust Speech Signal Process 31(5):1235–1248, 1983.

    Article  Google Scholar 

  31. Manolakis, D. G., Ingle, V. K., and Kogon, S. M., Statistical and adaptive signal processing. Artech House, London, 2005.

    Google Scholar 

  32. Johnson, D. H., and DeGraaf, S., Improving the resolution of bearing in passive sonar arrays by eigenvalue analysis. IEEE Trans Acoust Speech Signal Process 30(4):638–647, 1982.

    Article  Google Scholar 

  33. Yang, Z. R., Machine learning approaches to bioinformatics. World Scientific Publishing Co. Pte. Ltd., Singapore, 2010.

    Book  Google Scholar 

  34. Rosenblatt, F., The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65:386–408, 1958.

    Article  MathSciNet  Google Scholar 

  35. Subasi, A., and Erçelebi, E., Classification of EEG signals using neural network and logistic regression. Comput. Methods Prog. Biomed. 78(2):87–99, 2005.

    Article  Google Scholar 

  36. Haykin, S., Neural networks: a comprehensive foundation. Prentice-Hall, Saddle River, 1999.

    MATH  Google Scholar 

  37. Minsky, M., and Papert, S., Perceptrons. MIT Press, Cambridge, 1988.

    MATH  Google Scholar 

  38. Vapnik, V., Estimation of dependencies based on empirical data, springer, 2006.

    Google Scholar 

  39. Dobrowolski, A. P., Wierzbowski, M., and Tomczykiewicz, K., Multiresolution MUAPs decomposition and SVM-based analysis in the classification of neuromuscular disorders. Comput. Methods Prog. Biomed. 107(3):393–403, 2011.

    Article  Google Scholar 

  40. Cristianini, N., and Shawe-Taylor, J., An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, Surrey, 2000.

    Book  Google Scholar 

  41. Sandvig, J. J., Mobasher, B., and Burke, R., A survey of collaborative recommendation and the robustness of model-based algorithms. IEEE Computer Soc. Technical Committee Data Eng. 31(2):3–13, 2008.

    Google Scholar 

  42. Zweig, M. H., and Campbell, G., Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin. Chem. 39(8):561–577, 1993.

    Google Scholar 

  43. Zhang, R., McAllister, G., Scotney, B., McClean, S., and Houston, G., Combining wavelet analysis and Bayesian networks for the classification of auditory brainstem response. IEEE Trans. Info. Tech. Biomed 10(3):458–467, 2006.

    Article  Google Scholar 

  44. Witten, I., and Frank, E., Data mining, practical machine learning tools. Morgan Kaufmann Publishers (Elsevier), San Francisco, 2005.

    MATH  Google Scholar 

  45. Hanley, J. A., and McNeil, B. J., The meaning and use of the area under a receiver operating characteristic(ROC). Radiology 143:29–36, 1982.

    Google Scholar 

  46. Obuchowski, N. A., Receiver operating characteristic curves and their use in radiology. Radiology 229:3–8, 2003.

    Article  Google Scholar 

  47. Swets, J. A., ROC analysis applied to the evaluation of medical imaging techniques. Investig. Radiol. 14:109–121, 1979.

    Article  Google Scholar 

  48. Pino, L. J., Stashuk, D. W., Boe, S. G., and Doherty, T. J., Motor unit potential characterization using pattern discovery. Med. Eng. Phys. 30(5):563–573, 2008.

    Article  Google Scholar 

  49. Yan, Z., Wang, Z., and Xie, H., The application of mutual information-based feature selection and fuzzy LS-SVM-based classifier in motion classification. Comput. Methods Prog. Biomed. 90(3):275–284, 2008.

    Article  Google Scholar 

  50. Kamayuako, E. N., Farina, D., Yoshida, K., and Jensen, W., Relationship between grasping force and features of sgnle channel intramuscular EMG signals. J. Neurosci. Methods 185(1):143–150, 2009.

    Article  Google Scholar 

  51. Massart, D. L., Vandeginste, B. G. M., Buydens, L. M. C., De Jong, S., Lewi, P. J., and Smeyers-Verbeke, J., Handbook of chemometrics and qualimetrics. Elsevier, Amsterdam, p. 1997, 1997.

    Google Scholar 

  52. Belousov, A. I., Verzakov, S. A., and Frese, J., A flexible classification approach with optimal generalisation performance:support vector machines. Chemom. Intell. Lab. Syst. 64(1):15–25, 2002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ercan Gokgoz.

Additional information

This article is part of the Topical Collection on Patient Facing Systems

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gokgoz, E., Subasi, A. Effect of multiscale PCA de-noising on EMG signal classification for diagnosis of neuromuscular disorders. J Med Syst 38, 31 (2014). https://doi.org/10.1007/s10916-014-0031-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-014-0031-3

Keywords

Navigation