Skip to main content
Log in

A Comprehensive Survey of Wireless Body Area Networks

On PHY, MAC, and Network Layers Solutions

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Recent advances in microelectronics and integrated circuits, system-on-chip design, wireless communication and intelligent low-power sensors have allowed the realization of a Wireless Body Area Network (WBAN). A WBAN is a collection of low-power, miniaturized, invasive/non-invasive lightweight wireless sensor nodes that monitor the human body functions and the surrounding environment. In addition, it supports a number of innovative and interesting applications such as ubiquitous healthcare, entertainment, interactive gaming, and military applications. In this paper, the fundamental mechanisms of WBAN including architecture and topology, wireless implant communication, low-power Medium Access Control (MAC) and routing protocols are reviewed. A comprehensive study of the proposed technologies for WBAN at Physical (PHY), MAC, and Network layers is presented and many useful solutions are discussed for each layer. Finally, numerous WBAN applications are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Notes

  1. Energy absorbed by the body when exposed to RF waves and is measured in watts per kilogram

  2. To differentiate it from the term Medium Access Control (MAC), Message Authentication Code (MAC) is represented in bold letters.

Abbreviations

ALTR:

Adaptive Least Temperature Routing

AES:

Advanced Encryption Standard

CSMA/CA:

Carrier Sense Multiple Access/Collision Avoidance

CAP:

Contention Access Period

CFP:

Contention Free Period

CCA:

Clear Channel Assessment

C1/C2:

Control Channels

CE:

Consumer Electronics

CTR:

Counter

CBC:

Cipher-block Chaining

CCM:

Counter with CBC

CRC:

Cyclic Redundancy Check

CAB:

Coefficient of Absorption and Bioeffects

CICADA:

Cascading Information Retrieval by Controlling Access with Distributed slot Assignment protocol

CBR:

Constant Bit Rate

DTDMA:

Reservation-based Dynamic TDMA Protocol

ERP:

Effective Radiated Power

ECG:

Electrocardiogram

FCC:

Federal Communication Commission

FDTD:

Finite Difference Time Domain

GDP:

Gross Domestic Product

GTS:

Guaranteed Time Slot

H-MAC:

Heart-beat Driven MAC Protocol

HEC:

Hydroxyl Ethyl Cellulose

H-V:

Horizontal-Vertical Polarisation

H-H:

Horizontal-Horizontal Polarisation

IEEE:

Institute of Electrical and Electronics Engineers

ISM:

Industrial, Scientific, and Medical band

LPL:

Low Power Listening

LBT:

Listen Before Talking

LOS:

Line Of Sight

LTR:

Least Temperature Routing

LTRT:

Least Total Route Temperature

MAC:

Medium Access Control

MICS:

Medical Implant Communications Service

MAC (bold letters):

Message Authentication Code

MN:

Master Node

MS:

Monitoring Station

NIST:

National Institute of Standards and Technology

NLOS:

Non-line Of Sight

NS2:

Network Simulator 2

PHY:

Physical Layer

PB-TDMA:

Preamble-based TDMA Protocol

QoS:

Quality of Service

RF:

Radio Frequency

REMCOM:

a software company (http://www.remcom.com/)

SAR:

Specific Absorption Rate

TDMA:

Time Division Multiple Access

TSRP:

Time Slot Reserved for Periodic Traffic

TSRB:

Time Slot Reserved for Bursty Traffic

TARA:

Thermal Aware Routing Algorithm

TIP:

Temperature Increase Potential

UWB:

Ultra-wide Band

V-V:

Vertical-Vertical Polarisation

V-H:

Vertical-Horizontal Polarisation

WBAN:

Wireless Body Area Network

WMTS:

Wireless Medical Telemetry Services

WASP:

Wireless Autonomous Spanning Tree Protocol

WSN:

Wireless Sensor Network

XFDTD:

a 3d Electromagnetic simulation software package

XOR:

Exclusive OR

References

  1. Campbell, P., Current population reports (population projections: States, 1995–2025), pp. 25–1131. Census Bureau, 2005.

  2. Barroso, A., Benson, J., et al., The DSYS25 sensor platform. In: Proceedings of the ACM Sensys 2004, Baltimore, 2004.

  3. Jovanov, E., Milenkovic, A., Otto, C., and de Groen, P., A Wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation. JNER 2(6):16–23, 2005.

    Google Scholar 

  4. IEEE 802.15.6, Technical requirements document, 2008.

  5. Yang, G. Z., Body sensor networks (chapter: Wirelss communication). Springer, 2006.

  6. Finkenzeller, K., RFID handbook, 2nd Edn. Wiley International, 2003.

  7. Kraus, J. D., Antennas, 2nd edn. McGraw Hill, 1988.

  8. Bancroft, R., Microstrip and printed antenna design, 2nd Edn. SciTech, 2008.

  9. Cotton, S. L., Scanlon, W. G., Channel characterization for single- and multiple-antenna wearable systems used for indoor body-to-body communications. IEEE Trans. Antennas Propag. 2(4):980–990, 2009.

    Article  Google Scholar 

  10. Conway, G., Cotton, S., and Scanlon, W., An antennas and propagation approach to improving physical layer performance in wireless body area networks. IEEE J. Sel. Areas Commun. 27(1):27–36, 2009.

    Article  Google Scholar 

  11. Wojclk, J., Tissue recipe calibration requirements, SSI/DRB-TP-D01-003, Spectrum Sciences Institute RF Dosemetry Research Board, 51 Spectrum Way, Nepean, Ontario, K2R 1E6 Canada, 1998.

  12. Yang, G.-Z., Body Sensor Networks, pp. 125–127. Springer: London, 2006.

    Book  Google Scholar 

  13. Yang, G.-Z., Body Sensor Networks, pp. 128–136. Springer: London, 2006.

    Book  Google Scholar 

  14. Johansson, A. J., Wave-propagation from medical implants-inuence of body shape on radiation pattern, in 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society, Proceedings of the Second Joint EMBS/BMES Conference, Vol. 2, pp. 1409–1410, 2002.

  15. Ullah, S., Higgins, H., Shen, B., and Kwak, K. S., On the implant communication and MAC protocols for WBAN, International Journal of Communication Systems 982–999, 2010. doi:10.1002/dac.1100.

  16. Sayrafian-Pour, K., Wen-Bin Yang, Hagedorn, J., Terrill, J., and Yazdandoost, K. Y., A statistical path loss model for medical implant communication channels, Personal, In the Proc. of 2009 IEEE 20th International Symposium onIndoor and Mobile Radio Communications , pp. 2995–2999, 2009.

  17. Hall, P. S., Antennas Challenges for Body Centric Communications, International Workshop on Antenna Technology: Small and Smart Antennas Metamaterials and Applications, pp. 41–44, 2007.

  18. Kamarudin, M. R., Nechayev, Y. I., and Hall, P. S., Performance of antennas in the on body environment, IEEE AP-S International Symposium, Washington, USA, pp. 475–478, 2005.

  19. Kamarudin, M. R., and Hall, P. S., Diversity measurements of antennas in the on-body environment, In the Proc. of European Conference on Antennas and Propagation (EuCAP06), France, 2006.

  20. Hall, P. S., and Hao, Y., Antennas and propagation for body centric communications, In the Proc. of First European Conference on Antennas and Propagation (EuCAP 2006), pp. 1–7, 2006.

  21. Reusens, E., Joseph, W., Vermeeren, G., Martens, L., Latre, B., Moerman, I., Braem, B., and Blondia, C., Path loss models for wireless communication channel along arm and torso: measurements and simulations, In the Proc. of IEEE International Symposium on Antennas and Propagation Society, pp. 345–348, 2007.

  22. Salonen, P., and Rahmat, Y., Textile Antennas: Effects of Antenna Bending on Input Matching and Impedance Bandwidth, In the Proc. of European Conference on Antennas and Propagation (EuCAP06). France, 2006.

  23. Ullah, S., Bin, S., Islam, S. M. R., Pervez. K., Shahnaz. S., and Kwak, K. S., A Study of MAC Protocols for WBANs. Sensors 10(1):128–145, 2010.

    Article  Google Scholar 

  24. Huaming, L., and Jindong, T., An Ultra-low-power Medium Access Control Protocol for Body Sensor Network, in the Proc. of 27th Annual International Conference of the Engineering in Medicine and Biology Society, pp. 2451–2454, 2005.

  25. Zhen, B., Li, H. B., and Kohno, R., IEEE body area networks and medical implant communications, in the Proc. of the ICST 3rd International Conference on Body Area Networks. Tempe, Ariz, USA, 2008.

  26. Ullah, S., Kwak, D., Lee, C., Lee, H., and Kwak, K. S., Numerical Analysis of CSMA/CA for Pattern-Based WBAN System, in the Proc. of 2nd International Conference on Biomedical Engineering and Informatics, (BMEI 2009) pp. 1–3, 2009.

  27. Polastre, J., Hill, J., and Culler, D., Versatile low power media access for wireless sensor networks. In Proc. of the 2nd International Conference on Embedded Networked Sensor Systems, pp. 95–107. New York, USA, 2004.

  28. Ye, W., and Estrin, H. J., An energy-efficient MAC protocol for wireless sensor networks. In Proc. of Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies, pp. 1567–1576. Miami, USA, 2002.

  29. Ullah, S., Islam, S. M. R., Nessa, A., Zhong, Y., and Kwak, K. S., Performance analysis of preamble based TDMA protocol for wireless body area network, Journal of Communication Software and Systems 4(3):222–226, 2008.

    Google Scholar 

  30. IEEE Std.802.15.4, Wireless medium access control (MAC) and physical layer (PHY) specifications for low data rate wireless personal area networks (WPAN). IEEE: Piscataway, USA, 2006.

  31. Timmons, N. F., and Scanlon, W. G., Analysis of the performance of IEEE 802.15.4 for medical sensor body area networking. in the Proc. of First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks (IEEE SECON 2004) pp. 16–24, 2004.

  32. Changle, L., Huan-Bang, L., and Kohno, R., Performance evaluation of IEEE 802.15.4 for Wireless Body Area Network (WBAN). in the Proc. of IEEE International Conference on Communications Workshops (ICC Workshops 2009) pp. 1–5, 2009.

  33. IEEE 802.11e Std Amendment to Part 11, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Medium access control quality of services enhancements, 2005.

  34. Cavalcanti, D., Schmitt, R., and Soomro, A., Performance Analysis of 802.15.4 and 802.11e for body sensor network applications. in the Proc. of 4th International Workshop on Wearable and Implantable Body Sensor Networks, 2007.

  35. Chen, C., and Pomalaza-Raez, C., Monitoring human movements at home using wearable wireless sensors. in the Proc. of ISMICT 2009. Montreal, 2009.

  36. Su, H., and Zhang, X., Battery-dynamics driven tdma mac protocols for wireless body-area monitoring networks in healthcare applications. IEEE J. Sel. Areas Commun. 27(4):424–434, 2009.

    Article  Google Scholar 

  37. Chiasserini, C. F., and Rao, R. R., A model for battery pulsed discharge with recovery effect. in the Proc. of IEEE Wireless Communications and Networking Conference (WCNC 1999), Vol. 2, pp. 636–639, 1999.

  38. Marinkovi, S. J., Popovici, E. M., Spagnol, C., Faul, S., and Marnane, W. P., Energy-efficient low duty cycle MAC protocol for wireless body area networks. IEEE Trans. Inf. Technol. Biomed. 13(6):915–925, 2009.

    Article  Google Scholar 

  39. Zhang, Y., and Dolmans, G., A new priority-guaranteed MAC protocol for emerging body area networks. in the Proc. of Fifth International Conference on Wireless and Mobile Communications (ICWMC 2009), pp.140–145, 2009.

  40. Li, H. M., and Tan, J. D., Heartbeat driven MAC for body sensor networks. In Proc. of the 1st ACM SIGMOBILE international workshop on systems and networking support for healthcare and assisted living environments, pp. 25–30. Puerto Rico, 2007.

  41. Li, C., Li, H. B., and Kohno, R., Reservation-based dynamic TDMA protocol for medical body area networks. IEICE Trans. Commun. 2009 92(2):387–395, 2009.

    Article  Google Scholar 

  42. Fang, G., and Dutkiewicz, E., BodyMAC: Energy efficient TDMA-based MAC protocol for wireless body area networks. in the Proc. of 9th International Symposium on Communications and Information Technology (ISCIT 2009), pp. 1455–1459, 2009.

  43. Kwak, K. S., Ullah, S., Kwak, D. H., Lee, C. H., and Lee., H. S., A power-efficient MAC protocol for WBAN. Journal of Korean Institute of Intelligent Transport Systems 8(6):131–140, 2009.

    Google Scholar 

  44. El-Hoiydi, A., and Decotignie, J. D., WiseMAC: An ultra low power MAC protocol for multi-hop wireless sensor networks. in the Proc. of the First International Workshop on Algorithmic Aspects of Wireless Sensor Networks (ALGOSENSORS 2004), LNCS 3121, pp. 18.31, 2004.

  45. Saleem, S., Ullah, S., and Yoo, H. S., On the security issues in wireless body area networks. Journal of Digital Content Technology and its Applications (JDCTA) 3(3):178–184, 2009.

    Google Scholar 

  46. Ng, H. S., Sim, M. L., and Tan, C. M., Security issues of wireless sensor networks in healthcare applications. BT Technol. J. 24(2):138–144, 2006.

    Article  Google Scholar 

  47. Law, Y. W., Doumen, J., and Hartel, P., Survey and benchmark of block ciphers for wireless sensor networks. ACM Transactions on Sensor Networks (TOSN) 2(1):65–93, 2006.

    Article  Google Scholar 

  48. Riu, P. J., and Foster, K. R., Heating of tissue by near-field exposure to a dipole: a model analysis. IEEE Trans. Biomed. Eng. 46(8):911–917, 1999.

    Article  Google Scholar 

  49. Akkaya, K., and Younis, M., A survey on routing protocols for wireless sensor networks. Ad Hoc Networks 3(3):325–349, 2005.

    Article  Google Scholar 

  50. Cypher, D., Chevrollier, N., Montavont, N., and Golmie, N., Prevailing over wires in healthcare environments: benefits and challenges. IEEE Commun. Mag. 44(4):56–63, 2006.

    Article  Google Scholar 

  51. Zasowski, T., Althaus, F., Stager, M., Wittneben, A., and Troster, G., UWB for noninvasive wireless body area networks: channel measurements and results, in the Proc. of 2003 IEEE Conference on Ultra Wideband Systems and Technologies, pp. 285–289, 2003.

  52. Latre, B., Vermeeren, G., Moerman, I., Martens, L., and Demeester, P., Networking and propagation issues in body area networks. in the Proc. of 11th Symposium on Communications and Vehicular Technology. Belgium, 2004.

  53. Shankar, V., Natarajan, A., Gupta, S. K. S., and Schwiebert, L., Energy-efficient protocols for wireless communication in biosensornetworks. in the Proc. of 12th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2001), Vol. 1, pp. 114–118, 2001.

  54. Braem, B., Latre, B., Moerman, I., Blondia, C., Reusens, E., Joseph, W., Martens, L., and Demeester, P., The need for cooperation and relaying in short-range high path loss sensor networks. In the Proc. of First International Conference on Sensor Technologies and Applications (SENSORCOMM 2007), pp. 566–571. Spain, 2007.

  55. Reusens, E., Joseph, W., Vermeeren, G., Kurup, D., and Martens, L., Real human body measurements, model, and simulations of 2.45 GHz wireless body area network communication channel. In the Proc. of International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2008), pp. 149–152. China, 2008.

  56. Fort, A., Ryckaert, J., Desset, C., De Doncker, P., Wambacq, P., and Van Biesen, L., Ultra-wideband channel model for communication around the human body. IEEE J. Sel. Areas Commun. 24(4):927–933, 2006.

    Article  Google Scholar 

  57. Natarajan, A., Motani, M., de Silva, B., Yap, K., and Chua, K. C., Investigating network architectures for body sensor networks. in the Proc. of 1st ACM SIGMOBILE international workshop on Systems and networking support for healthcare and assisted living environments. New York, NY, USA, 2007.

  58. Arumugam, D. D., Gautham, A., Narayanaswamy, G., and Engels, D. W., Impacts of RF radiation on the human body in a passive wireless healthcare environment. in the Proc. of Second International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth 2008), pp. 181–182, 2008.

  59. Ren, H., and Meng, M. Q. H., Rate control to reduce bioeffects in wireless biomedical sensor networks. in the Proc. of 3rd Annual International Conference on Mobile and Ubiquitous Systems, pp. 1–7. San Jose, CA, 2006.

  60. Tang, Q., Tummala, N., Gupta, S. K. S., and Schwiebert, L., Communication scheduling to minimize thermal effects of implanted biosensor networks in homogeneous tissue. IEEE Trans. Biomed. Eng. 52(7):1285–1294, 2005.

    Article  Google Scholar 

  61. Bag, A., and Bassiouni, M. A., Energy efficient thermal aware routing algorithms for embedded biomedical sensor networks. in the Proc. of IEEE International Conference on Mobile Adhoc and Sensor Systems (MASS 2006), pp. 604–609. Vancouver, BC, 2006.

  62. Takahashi, D., Xiao, Y., Hu, F., Chen, J., and Sun, Y., Temperature-aware routing for telemedicine applications in embedded biomedical sensor networks. EURASIP Journal on Wireless Communications and Networking, Article ID 572636, 11 pages, 2008.

  63. Watteyne, T., Auge-Blum, S., Dohler, M., and Barthel, D., Anybody: a self-organization protocol for body area networks. in the Proc. of Second International Conference on Body Area Networks (BODYNETS 2007). Florence, Italy, 2007.

  64. Heinzelman, W. R., Chandrakasan, A., and Balakrishnan, H, Energy-efficient communication protocol for wireless microsensor networks. in the Proc. of 33rd Annual Hawaii International Conference on System Sciences, pp. 8020–8024, 2000.

  65. Moh, M., Culpepper, B. J., Dung, L., Moh, T. S., Hamada, T., and Su, C., On data gathering protocols for in-body biomedical sensor networks. in the Proc. of IEEE Conference on Global Telecommunications (GLOBECOM 2005), Vol. 5, 2005.

  66. Madan, R., Cui, S., Lall, S., and Goldsmith, N. A., Cross-layer design for lifetime maximization in interference-limited wireless sensor networks. IEEE Trans. Wirel. Commun. 5(11):3142–3152, 2006.

    Article  Google Scholar 

  67. Melodia, T., Vuran, M., and Pompil, D., The state of the art in cross-layer design for wireless sensor networks. in the Proc. of EuroNGI Workshop on Wireless and Mobility, LNCS 3883, pp. 78–92, 2005.

  68. Ruzzelli, A. G., Jurdak, R., OHare, G. M., and Stok, P. V. D., Energy-efficient multi-hop medical sensor networking. in the Proc. of 1st ACM SIGMOBILE international workshop on Systems and networking support for healthcare and assisted living environments, pp. 37–42. ACM: New York, NY, USA, 2007.

    Chapter  Google Scholar 

  69. Braem, B., Latre, B., Moerman, I., Blondia, C., and Demeester, P., The wireless autonomous spanning tree protocol for multihop wireless body area networks. in the Proc. of 3rd International Conference on Mobile and Ubiquitous Systems: Networking and Services, pp. 479–486. San Jose, CA, USA, 2006.

  70. Latre, B., Braem, B., Moerman, I., Blondia, C., Reusens, E., Joseph, W., and Demeester, P., A low-delay protocol for multihop wireless body area networks. in the Proc. of 4th International Conference on Mobile and Ubiquitous Systems: Networking and Services, pp. 479–486. Philadelphia, PA, USA, 2007.

  71. De Poorter, E., Latre, B., Moerman, I., and Demeester, P., Sensor and Ad-Hoc networks: theoretical and algorithmic aspects. Lecture Notes Electrical Engineering, Vol. 7. Springer, Chapter: Universal Framework for Sensor Networks, 2008.

  72. Zhou, G., Lu, J., Wan, C. Y., Yarvis, M. D., and Stankovic, J. A., BodyQoS: Adaptive and radio-agnostic QoS for body sensor networks. in the Proc. of 27th Conference on Computer Communications (INFOCOM 2008), pp. 565–573, 2008.

  73. Ullah, S., Khan, P., Ullah, N., Higgins, H., Saleem, S., and Kwak, K. S., A review of WBANs for medical applications. International Journal of Communications, Network and System Sciences (IJCNS) 2(8):797–803, 2009.

    Article  Google Scholar 

  74. Lo, B., and Yang, G. Z., Key technical challenges and current implementations of body sensor networks. in the Proc. of IEEE 2nd International Workshop on Body Sensor Networks (BSN 2005), pp. 1–5, 2005.

  75. Chu, H. T., Huang, C. C., Lian, Z. H., and Tsai, T. P., A ubiquitous warning system for asthma-inducement. in the Proc. of IEEE International Conference on Sensor networks, Ubiquitous and Thrustworthy Computing, pp. 186–191. Taichung, Taiwan, 2006.

  76. Theogarajan, L., Wyatt, J., Rizzo, J., Drohan, B., Markova, M., Kelly, S., Swider, G., Raj, M., Shire, D., Gingerich, M., Lowenstein, J., and Yomtov., B., Minimally invasive retinal prosthesis. In solid-state circuits. in the Proc. of IEEE International Conference Digest of Technical Papers, pp. 99–108, 2006.

Download references

Acknowledgements

The authors would like to thank Mr. Michael J. Hladik, Mr. Niamat Ullah, and Mr. Pervez Khan (Inha University) for their insightful comments on the manuscript. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government(MEST) (No. No.2010-0018116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahnaz Saleem.

Appendices

Appendix A

Table 11

Table 11 Comparison of low-power MAC protocols for WBAN [26]

Appendix B

Table 12

Table 12 Performance summary of different ciphers [47]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ullah, S., Higgins, H., Braem, B. et al. A Comprehensive Survey of Wireless Body Area Networks. J Med Syst 36, 1065–1094 (2012). https://doi.org/10.1007/s10916-010-9571-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-010-9571-3

Keywords

Navigation