Skip to main content
Log in

Tokamak Free-Boundary Plasma Equilibrium Computations in Presence of Non-Linear Materials

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We consider the axisymmetric formulation of the equilibrium problem for a hot plasma in a tokamak. We adopt a non-overlapping mortar element approach, that couples \(\mathcal {C}^0\) piece-wise linear Lagrange finite elements in a region that does not contain the plasma and \(\mathcal {C}^1\) piece-wise cubic reduced Hsieh–Clough–Tocher finite elements elsewhere, to approximate the magnetic flux field on a triangular mesh of the poloidal tokamak section. The inclusion of ferromagnetic parts is simplified by assuming that they fit within the axisymmetric modeling and a new formulation of the Newton algorithm for the problem solution is stated, both in the static and quasi-static evolution cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. All numerical simulations are here performed with the software NICE (see [11]).

  2. In the Standard International (SI) unit system, mass M (kg), length L (m), time T (s) and current intensity I (A) are base dimensions (resp., units).

  3. From \(\psi \, {\textbf{e}}_\varphi = r \,{\textbf{A}}_t\), we get \( {\textbf{A}}_t = (0, \, A_\varphi , \, 0)^\top \) where \(A_\varphi \) is equal to \( \frac{1}{r} \psi \). In cylindrical coordinates, for this vector \( {\textbf{A}}_t \) we have \( \textrm{curl}\, {\textbf{A}}_t = (-\partial _z A_\varphi , 0, \frac{1}{r}\partial _r (r \, A_\varphi ))^\top \).

  4. We wish to recall the fundamental contribution of Roland Glowinski to the analysis, the finite element approximation and numerical resolution by Newton-like methods of such non-linear problems.

  5. To approximate \(\texttt{J}_p(\cdot ,\cdot )\) in (12) by a quadrature formula we need to know the domain \(\varOmega _p(\psi )\) occupied by the plasma. This domain is an unknown of the equilibrium problem, as it depends on \(\psi \). An efficient technique to determine it is stated in [10].

References

  1. Albanese, R., Blum, J., Barbieri, O.: On the solution of the magnetic flux equation in an infinite domain. In: EPS. 8th Europhysics Conference on Computing in Plasma Physics (1986), pp. 41–44 (1986)

  2. Bernardi, C., Maday, Y., Patera, A.: A new nonconforming approach to domain decomposition: the mortar element method. In: Brézis, H., Lions, J.-L. (eds.) Nonlinear Partial Differential Equations and Their Applications. Collège de France Seminar XI (1992)

  3. Blackman, E.G.: Magnetic helicity and large scale magnetic fields: a primer. J. Fluid Mech. 188, 59–91 (2015)

    Google Scholar 

  4. Blum, J.: Numerical Simulation and Optimal Control in Plasma Physics with Applications to Tokamaks. Series in Modern Applied Mathematics, Wiley Gauthier-Villars, Paris (1989)

    MATH  Google Scholar 

  5. Blum, J., Le Foll, J., Thooris, B.: The self-consistent equilibrium and diffusion code SCED 24, 235–254 (1981)

  6. Blum, J., Heumann, H., Nardon, E., Song, X.: Automating the design of tokamak experiment scenarios. J. Comput. Phys. 394, 594–614 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cantarella, J., DeTurck, D., Gluck, H., Teytel, M.: Influence of geometry and topology on helicity. In: Geophysical Monograph-American Geophysical Union, vol. 111, pp. 17–24 (1999)

  8. Christiansen, S.H., Hu, K.: Generalized finite element systems for smooth differential forms and Stokes’ problem. Numer. Math. 140, 327–371 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Clough, R., Tocher, J.: Finite element stiffness matrices for analysis of plates in bending. In: Proc. Conf. Matrix Methods in Struct. Mech. Air Force Inst of Tech., Wright Patterson A.F Base, Ohio (1965)

  10. Elarif, A., Faugeras, B., Rapetti, F.: Tokamak free-boundary plasma equilibrium computation using finite elements of class \({C}^0\) and \({C}^1\) within a mortar element approach. J. Comput. Phys. 439, 110388 (2021)

    Article  MATH  Google Scholar 

  11. Faugeras, B.: An overview of the numerical methods for tokamak plasma equilibrium computation implemented in the NICE code. Fusion Eng. Des. 160, 112020 (2020)

    Article  Google Scholar 

  12. Glowinski, R., Marrocco, A.: Analyse numérique du champ magnétique d’un alternateur par élements finis et sur-relaxation ponctuelle non linéaire. Comput. Methods Appl. Mech. Eng. 3, 55–85 (1974)

    Article  MATH  Google Scholar 

  13. Glowinski, R., Marrocco, A.: Sur l’approximation par eléments finis d’ordre 1, et la résolution par pénalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires. C.R.A.S. Serie A, Paris 278, 1649–1652 (1974)

  14. Grad, H., Rubin, H.: Hydromagnetic equilibria and force-free fields. In: 2nd UN Conf. on the Peaceful Uses of Atomic Energy, vol. 31, p. 190 (1958)

  15. Heumann, H.: A Galerkin method for the weak formulation of current diffusion and force balance in tokamak plasmas. J. Comput. Phys. 442, 110483 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Heumann, H., Rapetti, F.: A finite element method with overlapping meshes for free-boundary axisymmetric plasma equilibria in realistic geometries. J. Comput. Phys. 334, 522–540 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Heumann, H., Blum, J., Boulbe, C., Faugeras, B., Selig, G., Ané, J.M., Brémond, S., Grandgirard, V., Hertout, P., Nardon, E.: Quasi-static free-boundary equilibrium of toroidal plasma with CEDRES++: computational methods and applications. J. Plasma Phys. 81, 905810301 (2015)

    Article  Google Scholar 

  18. Jardin, S.: Computational Methods in Plasma Physics. Chapman & Hall/CRC Computational Science. CRC Press, Boca Raton (2010)

    Book  MATH  Google Scholar 

  19. Lüst, R., Schlüter, A.: Axialsymmetrische magnetohydrodynamische gleichgewicht- skonfigurationen. Z. Naturforsch A 12, 850–854 (1957)

    Article  Google Scholar 

  20. MacTaggart, D., Valli, A.: Magnetic helicity in multiply connected domains. J. Plasma Phys. 85, 775850501 (2019)

    Article  Google Scholar 

  21. Minjeaud, S., Pasquetti, R.: Fourier-spectral elements approximation of the two fluid ion-electron Braginskii system with application to tokamak edge plasma in divertor configuration. J. Comput. Phys. 321, 492–511 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Moffatt, H.K.: The degree of knottedness of tangled vortex lines. J. Fluid Mech. 35, 117–129 (1969)

    Article  MATH  Google Scholar 

  23. Moffatt, H., Ricca, R.: Helicity and the calugareanu invariant. pp. 411–429 (1992)

  24. Ratnani, A., Crouseilles, N., Sonnendrücker, E.: An isogeometric analysis approach for the study of the gyrokinetic quasi-neutrality equation. J. Comput. Phys. 231, 373–393 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rebut, P.: Instabilités non magnétohydrodynamiques dans les plasmas à densités de courant élevé. J. Nucl. Energy Part C 4, 159 (1963)

    Article  Google Scholar 

  26. Shafranov, V.: On magnetohydrodynamical equilibrium configurations. Soviet J. Exp. Theor. Phys. 6, 545 (1958)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Jacques Blum for his precious enlightenments on plasma physics and to Holger Heumann for stimulating conversations on the derivation and approximation of the Grad–Shafranov–Schlüter’s equation. FR thanks INRIA for the delegation during which this work was accomplished.

Funding

GG is a PhD student from the Université Côte d’Azur. FR received funding from the French National Research Agency under Grant Agreement SISTEM (ANR-19-CE46-0005-03). CB and BF have worked within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200—EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Rapetti.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boulbe, C., Faugeras, B., Gros, G. et al. Tokamak Free-Boundary Plasma Equilibrium Computations in Presence of Non-Linear Materials. J Sci Comput 96, 42 (2023). https://doi.org/10.1007/s10915-023-02265-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02265-8

Keywords

Mathematics Subject Classification

Navigation