Skip to main content
Log in

A Posteriori Analysis for a Mixed FEM Discretization of the Linear Elasticity Spectral Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we analyze a posteriori error estimates for a mixed formulation of the linear elasticity eigenvalue problem. A posteriori estimators for the nearly and perfectly compressible elasticity spectral problems are proposed. With a post-process argument, we are able to prove reliability and efficiency for the proposed estimators. The numerical method is based in Raviart-Thomas elements to approximate the pseudostress and piecewise polynomials for the displacement. We illustrate our results with numerical tests in two and three dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Alonso, A., Dello Russo, A., Otero-Souto, C., Padra, C., Rodríguez, R.: An adaptive finite element scheme to solve fluid-structure vibration problems on non-matching grids, vol. 4, pp. 67–78. Second AMIF International Conference (Il Ciocco, 2000) (2001)

  2. Barrios, T.P., Gatica, G.N., González, M., Heuer, N.: A residual based a posteriori error estimator for an augmented mixed finite element method in linear elasticity, M2AN Math. Model. Numer. Anal. 40(2006), 843–869 (2007)

    MATH  Google Scholar 

  3. Bertrand, F., Boffi, D., Ma, R.: An adaptive finite element scheme for the Hellinger-Reissner elasticity mixed eigenvalue problem. Comput. Methods Appl. Math. 21, 501–512 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boffi, D.: Fortin operator and discrete compactness for edge elements. Numer. Math. 87, 229–246 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. In: Springer Series in Computational Mathematics, vol. 44. Springer, Heidelberg (2013)

    MATH  Google Scholar 

  6. Boffi, D., Gallistl, D., Gardini, F., Gastaldi, L.: Optimal convergence of adaptive FEM for eigenvalue clusters in mixed form. Math. Comp. 86, 2213–2237 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boffi, D., Gastaldi, L., Rodríguez, R., Šebestová, I.: Residual-based a posteriori error estimation for the Maxwell’s eigenvalue problem. IMA J. Numer. Anal. 37, 1710–1732 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Boffi, D., Gastaldi, L., Rodríguez, R., Šebestová, I.: A posteriori error estimates for Maxwell’s eigenvalue problem. J. Sci. Comput. 78, 1250–1271 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. In: Springer Series in Computational Mathematics, vol. 15. Springer, New York (1991)

    MATH  Google Scholar 

  10. Carstensen, C., Gedicke, J.: Robust residual-based a posteriori Arnold-Winther mixed finite element analysis in elasticity. Comput. Methods Appl. Mech. Engrg. 300, 245–264 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Carstensen, C., Hellwig, F.: Optimal convergence rates for adaptive lowest-order discontinuous Petrov-Galerkin schemes. SIAM J. Numer. Anal. 56, 1091–1111 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Carstensen, C., Rabus, H.: The adaptive nonconforming FEM for the pure displacement problem in linear elasticity is optimal and robust. SIAM J. Numer. Anal. 50, 1264–1283 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, H., Jia, S., Xie, H.: Postprocessing and higher order convergence for the mixed finite element approximations of the eigenvalue problem. Appl. Numer. Math. 61, 615–629 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ciarlet, P. G.: The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam-New York-Oxford. Studies in Mathematics and its Applications, Vol. 4 (1978)

  15. Dauge, M.: Elliptic boundary value problems on corner domains, vol. 1341 of Lecture Notes in Mathematics, Springer-Verlag, Berlin (1988). Smoothness and asymptotics of solutions

  16. Durán, R.G., Gastaldi, L., Padra, C.: A posteriori error estimators for mixed approximations of eigenvalue problems. Math. Models Methods Appl. Sci. 9, 1165–1178 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gatica, G.N., Gatica, L.F., Sequeira, F.A.: A priori and a posteriori error analyses of a pseudostress-based mixed formulation for linear elasticity. Comput. Math. Appl. 71, 585–614 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gatica, G.N., Márquez, A., Rudolph, W.: A priori and a posteriori error analyses of augmented twofold saddle point formulations for nonlinear elasticity problems. Comput. Methods Appl. Mech. Engrg. 264, 23–48 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Grisvard, P.: Problèmes aux limites dans les polygones. Mode d’emploi, EDF Bull. Direction Études Rech. Sér. C Math. Inform., pp. 3, 21–59 (1986)

  20. Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numer 11, 237–339 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Houston, P., Schötzau, D., Wihler, T.P.: An \(hp\)-adaptive mixed discontinuous Galerkin FEM for nearly incompressible linear elasticity. Comput. Methods Appl. Mech. Engrg. 195, 3224–3246 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Inzunza, D., Lepe, F., Rivera, G.: Displacement-pseudostress formulation for the linear elasticity spectral problem: a priori analysis, arXiv:2101.09828 (2021)

  23. Jia, S., Chen, H., Xie, H.: A posteriori error estimator for eigenvalue problems by mixed finite element method. Sci. China Math. 56, 887–900 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Koelink, E., van Neerven, J.M., de Pagter, B., Sweers, G.: Partial Differential Equations and Functional Analysis: the Philippe Clément Festschrift, vol. 168. Springer Science & Business Media, Berlin (2006)

    Book  MATH  Google Scholar 

  25. Langtangen, H. P., Logg, A.: Solving PDEs in Python, vol. 3 of Simula SpringerBriefs on Computing, Springer, Cham (2016). The FEniCS tutorial I

  26. Lepe, F., Meddahi, S., Mora, D., Rodríguez, R.: Mixed discontinuous Galerkin approximation of the elasticity eigenproblem. Numer. Math. 142, 749–786 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mora, D., Rivera, G.: A priori and a posteriori error estimates for a virtual element spectral analysis for the elasticity equations. IMA J. Numer. Anal. 40, 322–357 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Raviart, P.-A., Thomas, J. M.: A mixed finite element method for 2nd order elliptic problems, in Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), Lecture Notes in Math., Vol. 606, pp. 292–315. Springer, Berlin(1977)

  29. Verfürth, R.: A posteriori error estimation and adaptive mesh-refinement techniques, In: Proceedings of the Fifth International Congress on Computational and Applied Mathematics (Leuven, 1992), vol. 50, pp. 67–83 (1994)

  30. Verfürth, R.: A Posteriori Error Estimation Techniques for Finite Element Methods, Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2013)

    Book  MATH  Google Scholar 

  31. Verführt, R.: A Review of a Posteriori Error Estimation and Adaptive Mesh-refinement Techniques. In: Advances in numerical mathematics, Wiley, New Jersey, US (1996)

    Google Scholar 

Download references

Funding

The first author was partially supported by DIUBB through project 2120173 GI/C Universidad del Bío-Bío and ANID-Chile through FONDECYT project 11200529 (Chile). The third author author was partially supported by ANID-Chile through project Anillo of Computational Mathematics for Desalination Processes ACT210087.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Rivera.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lepe, F., Rivera, G. & Vellojin, J. A Posteriori Analysis for a Mixed FEM Discretization of the Linear Elasticity Spectral Problem. J Sci Comput 93, 10 (2022). https://doi.org/10.1007/s10915-022-01972-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01972-y

Keywords

Mathematics Subject Classification

Navigation