Skip to main content
Log in

A Class of New High-order Finite-Volume TENO Schemes for Hyperbolic Conservation Laws with Unstructured Meshes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The recently proposed high-order TENO scheme [Fu et al., Journal of Computational Physics, 305(2016): 333-359] has shown great potential in predicting complex fluids owing to the novel weighting strategy, which ensures the high-order accuracy, the low numerical dissipation, and the sharp shock-capturing capability. However, the applications are still restricted to simple geometries with Cartesian or curvilinear meshes. In this work, a new class of high-order shock-capturing TENO schemes for unstructured meshes are proposed. Similar to the standard TENO schemes and some variants of WENO schemes, the candidate stencils include one large stencil and several small third-order stencils. Following a strong scale-separation procedure, a tailored novel ENO-like stencil selection strategy is proposed such that the high-order accuracy is restored in smooth regions by selecting the candidate reconstruction on the large stencil while the ENO property is enforced near discontinuities by adopting the candidate reconstruction from smooth small stencils. The nonsmooth stencils containing genuine discontinuities are explicitly excluded from the final reconstruction, leading to excellent numerical stability. Different from the WENO concept, such unique sharp stencil selection retains the low numerical dissipation without sacrificing the shock-capturing capability. The newly proposed framework enables arbitrarily high-order TENO reconstructions on unstructured meshes. For conceptual verification, the TENO schemes with third- to sixth-order accuracy are constructed. Without parameter tuning case by case, the performance of the proposed TENO schemes is demonstrated by examining a set of benchmark cases with broadband flow length scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author, Lin Fu.

References

  1. Fu, L., Karp, M., Bose, S.T., Moin, P., Urzay, J.: Shock-induced heating and transition to turbulence in a hypersonic boundary layer. J. Fluid Mech. 909, A8 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  2. Griffin, K.P., Fu, L., Moin, P.: Velocity transformation for compressible wall-bounded turbulent flows with and without heat transfer. Proc. Natl. Acad. Sci. 118(34), e2111144118 (2021)

    Article  MathSciNet  Google Scholar 

  3. Bai, T., Griffin, K.P., Fu, L.: Assessment of compressible velocity transformations for various non-canonical wall-bounded turbulent flows, Accepted by AIAA Journal (2022)

  4. Shu, C.-W.: High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51(1), 82–126 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Pirozzoli, S.: Numerical methods for high-speed flows. Annu. Rev. Fluid Mech. 43, 163–194 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Johnsen, E., Larsson, J., Bhagatwala, A.V., Cabot, W.H., Moin, P., Olson, B.J., Rawat, P.S., Shankar, S.K., Sjögreen, B., Yee, H., Zhong, X., Lele, S.K.: Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves. J. Comput. Phys. 229(4), 1213–1237 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fu, L., Hu, X.Y., Adams, N.A.: A Targeted ENO Scheme as Implicit Model for Turbulent and Genuine Subgrid Scales. Communications in Computational Physics 26(2), 311–345 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fu, L., Hu, X.Y., Adams, N.A.: Improved Five- and Six-Point Targeted Essentially Nonoscillatory Schemes with Adaptive Dissipation. AIAA J. 57(3), 1143–1158 (2019)

    Article  Google Scholar 

  9. Shu, C.-W.: High-order finite difference and finite volume WENO schemes and discontinuous Galerkin methods for CFD. International Journal of Computational Fluid Dynamics 17(2), 107–118 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ollivier-Gooch, C., Van Altena, M.: A high-order-accurate unstructured mesh finite-volume scheme for the advection-diffusion equation. J. Comput. Phys. 181(2), 729–752 (2002)

    Article  MATH  Google Scholar 

  11. Diskin, B., Thomas, J.L.: Accuracy analysis for mixed-element finite-volume discretization schemes. NIA report 8 (2007)

  12. Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cockburn, B., Shu, C.-W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141(2), 199–224 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Huynh, H.T.: A flux reconstruction approach to high-order schemes including discontinuous galerkin methods. In: 18th AIAA Computational Fluid Dynamics Conference, p. 4079

  15. Witherden, F., Vincent, P., Jameson, A.: High-order flux reconstruction schemes. In: Handbook of numerical analysis, Vol. 17, Elsevier, pp. 227–263 (2016)

  16. Zhou, T., Li, Y., Shu, C.-W.: Numerical comparison of WENO finite volume and Runge-Kutta discontinuous Galerkin methods. J. Sci. Comput. 16(2), 145–171 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Flad, D., Gassner, G.: On the use of kinetic energy preserving DG-schemes for large eddy simulation. J. Comput. Phys. 350, 782–795 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Frère, A., Carton de Wiart, C., Hillewaert, K., Chatelain, P., Winckelmans, G.: Application of wall-models to discontinuous Galerkin LES. Phys. Fluids 29(8), 085111 (2017)

    Article  Google Scholar 

  19. Krank, B., Kronbichler, M., Wall, W.A.: A multiscale approach to hybrid RANS/LES wall modeling within a high-order discontinuous Galerkin scheme using function enrichment. Int. J. Numer. Meth. Fluids 90(2), 81–113 (2019)

    Article  MathSciNet  Google Scholar 

  20. Collis, S.S.: Discontinuous Galerkin methods for turbulence simulation. In: Proceedings of the Summer Program, p. 155 (2002)

  21. Renac, F., de la Llave Plata, M., Martin, E., Chapelier, J.-B., Couaillier, V.: Aghora: a high-order DG solver for turbulent flow simulations. In: IDIHOM: Industrialization of High-Order Methods-A Top-Down Approach, Springer, pp. 315–335 (2015)

  22. Gempesaw, D.: A multi-resolution discontinuous Galerkin method for rapid simulation of thermal systems, Ph.D. thesis, Georgia Institute of Technology (2011)

  23. Abbassi, H., Mashayek, F., Jacobs, G.B.: Shock capturing with entropy-based artificial viscosity for staggered grid discontinuous spectral element method. Computers & Fluids 98, 152–163 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Haga, T., Kawai, S.: On a robust and accurate localized artificial diffusivity scheme for the high-order flux-reconstruction method. J. Comput. Phys. 376, 534–563 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Vandenhoeck, R., Lani, A.: Implicit High-Order Flux Reconstruction Positivity Preserving LLAV Scheme for Viscous High-Speed Flows. In: AIAA Scitech 2019 Forum, p. 1153 (2019)

  26. Van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32(1), 101–136 (1979)

    Article  MATH  Google Scholar 

  27. Van Leer, B.: Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection. J. Comput. Phys. 23(3), 276–299 (1977)

    Article  MATH  Google Scholar 

  28. Van Leer, B.: Towards the ultimate conservative difference scheme. ii. monotonicity and conservation combined in a second-order scheme. J. Comput. Phys. 14(4), 361–370 (1974)

    Article  MATH  Google Scholar 

  29. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high order accurate essentially non-oscillatory schemes, III. J. Comput. Phys. 71, 231–303 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, X.D., Osher, S., Chan, T.: Weighted Essentially Non-oscillatory Schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  31. Shu, C.-W.: TVB uniformly high-order schemes for conservation laws. Math. Comput. 49(179), 105–121 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  32. Boscheri, W., Dumbser, M.: Arbitrary-Lagrangian-Eulerian discontinuous Galerkin schemes with a posteriori subcell finite volume limiting on moving unstructured meshes. J. Comput. Phys. 346, 449–479 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Boscheri, W., Dumbser, M.: A direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D. J. Comput. Phys. 275, 484–523 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Boscheri, W., Balsara, D.S., Dumbser, M.: Lagrangian ADER-WENO finite volume schemes on unstructured triangular meshes based on genuinely multidimensional HLL Riemann solvers. J. Comput. Phys. 267, 112–138 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Barth, T., Jespersen, D.: The design and application of upwind schemes on unstructured meshes. In: 27th Aerospace sciences meeting, p. 366 (1989)

  36. Venkatakrishnan, V.: Convergence to steady state solutions of the Euler equations on unstructured grids with limiters. J. Comput. Phys. 118(1), 120–130 (1995)

    Article  MATH  Google Scholar 

  37. Li, W., Ren, Y.-X.: The multi-dimensional limiters for solving hyperbolic conservation laws on unstructured grids II: extension to high order finite volume schemes. J. Comput. Phys. 231(11), 4053–4077 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Michalak, C., Ollivier-Gooch, C.: Accuracy preserving limiter for the high-order accurate solution of the Euler equations. J. Comput. Phys. 228(23), 8693–8711 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Hu, C., Shu, C.-W.: Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150(1), 97–127 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhang, Y.-T., Shu, C.-W.: Third order WENO scheme on three dimensional tetrahedral meshes. Communications in Computational Physics 5(2–4), 836–848 (2009)

    MathSciNet  MATH  Google Scholar 

  41. Shi, J., Hu, C., Shu, C.-W.: A Technique of Treating Negative Weights in WENO Scheme. J. Comput. Phys. 175, 108–127 (2002)

    Article  MATH  Google Scholar 

  42. Cheng, J., Shu, C.-W.: A third order conservative Lagrangian type scheme on curvilinear meshes for the compressible Euler equations 4, 1008–1024 (2008)

    Google Scholar 

  43. Dumbser, M., Käser, M.: Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems. J. Comput. Phys. 221(2), 693–723 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. Dumbser, M., Käser, M., Titarev, V.A., Toro, E.F.: Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems. J. Comput. Phys. 226(1), 204–243 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. Liu, Y., Zhang, Y.-T.: A robust reconstruction for unstructured WENO schemes. J. Sci. Comput. 54(2–3), 603–621 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Levy, D., Puppo, G., Russo, G.: Central WENO schemes for hyperbolic systems of conservation laws. ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique 33(3), 547–571 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  47. Levy, D., Puppo, G., Russo, G.: Compact central WENO schemes for multidimensional conservation laws. SIAM J. Sci. Comput. 22(2), 656–672 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  48. Capdeville, G.: A central WENO scheme for solving hyperbolic conservation laws on non-uniform meshes. J. Comput. Phys. 227(5), 2977–3014 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  49. Cravero, I., Puppo, G., Semplice, M., Visconti, G.: CWENO: uniformly accurate reconstructions for balance laws. Math. Comput. 87(312), 1689–1719 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhu, J., Shu, C.-W.: A new type of multi-resolution WENO schemes with increasingly higher order of accuracy on triangular meshes. J. Comput. Phys. 392, 19–33 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhu, J., Shu, C.-W.: A new type of third-order finite volume multi-resolution WENO schemes on tetrahedral meshes. J. Comput. Phys. 406, 109212 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  52. Balsara, D.S., Garain, S., Florinski, V., Boscheri, W.: An efficient class of WENO schemes with adaptive order for unstructured meshes. J. Comput. Phys. 404, 109062 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  53. Tsoutsanis, P., Dumbser, M.: Arbitrary high order central non-oscillatory schemes on mixed-element unstructured meshes. Computers & Fluids 225, 104961 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  54. Tsoutsanis, P., Adebayo, E.M., Merino, A.C., Arjona, A.P., Skote, M.: CWENO Finite-Volume Interface Capturing Schemes for Multicomponent Flows Using Unstructured Meshes. J. Sci. Comput. 89(3), 1–27 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  55. Boscheri, W., Balsara, D.S.: High order direct Arbitrary-Lagrangian-Eulerian (ALE) PNPM schemes with WENO Adaptive-Order reconstruction on unstructured meshes. J. Comput. Phys. 398, 108899 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  56. Fu, L., Hu, X.Y., Adams, N.A.: A family of high-order targeted ENO schemes for compressible-fluid simulations. J. Comput. Phys. 305, 333–359 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  57. Fu, L., Hu, X.Y., Adams, N.A.: Targeted ENO schemes with tailored resolution property for hyperbolic conservation laws. J. Comput. Phys. 349, 97–121 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  58. Fu, L., Hu, X.Y., Adams, N.A.: A new class of adaptive high-order targeted ENO schemes for hyperbolic conservation laws. J. Comput. Phys. 374, 724–751 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  59. Fu, L.: Very-high-order TENO schemes with adaptive accuracy order and adaptive dissipation control. Comput. Methods Appl. Mech. Eng. 387, 114193 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  60. Takagi, S., Fu, L., Wakimura, H., Xiao, F.: A novel high-order low-dissipation TENO-THINC scheme for hyperbolic conservation laws. J. Comput. Phys. 452, 110899 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  61. Haimovich, O., Frankel, S.H.: Numerical simulations of compressible multicomponent and multiphase flow using a high-order targeted ENO (TENO) finite-volume method. Computers & Fluids 146, 105–116 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  62. Dong, H., Fu, L., Zhang, F., Liu, Y., Liu, J.: Detonation simulations with a fifth-order TENO scheme. Communications in Computational Physics 25, 1357–1393 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  63. Fu, L., Tang, Q.: High-order low-dissipation targeted ENO schemes for ideal magnetohydrodynamics. J. Sci. Comput. 80(1), 692–716 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  64. Fu, L.: An Efficient Low-Dissipation High-Order TENO Scheme for MHD Flows. J. Sci. Comput. 90(1), 1–24 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  65. Sun, Z., Inaba, S., Xiao, F.: Boundary Variation Diminishing (BVD) reconstruction: A new approach to improve Godunov schemes. J. Comput. Phys. 322, 309–325 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  66. Zhao, G.-Y., Sun, M.-B., Pirozzoli, S.: On shock sensors for hybrid compact/WENO schemes. Computers & Fluids 199, 104439 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  67. Zhang, H., Zhang, F., Liu, J., McDonough, J., Xu, C.: A simple extended compact nonlinear scheme with adaptive dissipation control. Commun. Nonlinear Sci. Numer. Simul. 84, 105191 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  68. Zhang, H., Zhang, F., Xu, C.: Towards optimal high-order compact schemes for simulating compressible flows. Appl. Math. Comput. 355, 221–237 (2019)

    MathSciNet  MATH  Google Scholar 

  69. Fardipour, K., Mansour, K.: Development of targeted compact nonlinear scheme with increasingly high order of accuracy. Progress in Computational Fluid Dynamics, an International Journal 20(1), 1–19 (2020)

    Article  MathSciNet  Google Scholar 

  70. Fu, L.: A Hybrid Method with TENO Based Discontinuity Indicator for Hyperbolic Conservation Laws. Communications in Computational Physics 26, 973–1007 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  71. Di Renzo, M., Fu, L., Urzay, J.: HTR solver: An open-source exascale-oriented task-based multi-GPU high-order code for hypersonic aerothermodynamics. Comput. Phys. Commun. 255, 107262 (2020)

    Article  MathSciNet  Google Scholar 

  72. Motheau, E., Wakefield, J.: Investigation of finite-volume methods to capture shocks and turbulence spectra in compressible flows. Communications in Applied Mathematics and Computational Science 15, 1–36 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  73. Lusher, D.J., Sandham, N.D.: Shock-wave/boundary-layer interactions in transitional rectangular duct flows. Flow Turbul. Combust. 105(2), 649–670 (2020)

    Article  Google Scholar 

  74. Lefieux, J., Garnier, E., Sandham, N.: DNS Study of Roughness-Induced Transition at Mach 6. In: AIAA Aviation 2019 Forum, p. 3082 (2019)

  75. Lusher, D.J., Sandham, N.: Assessment of low-dissipative shock-capturing schemes for transitional and turbulent shock interactions. In: AIAA Aviation 2019 Forum, p. 3208 (2019)

  76. Zhu, J., Qiu, J.: A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 318, 110–121 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  77. Balsara, D.S., Garain, S., Shu, C.-W.: An efficient class of WENO schemes with adaptive order. J. Comput. Phys. 326, 780–804 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  78. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  79. Tsoutsanis, P., Titarev, V.A., Drikakis, D.: WENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions. J. Comput. Phys. 230(4), 1585–1601 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  80. Tsoutsanis, P., Antoniadis, A.F., Drikakis, D.: WENO schemes on arbitrary unstructured meshes for laminar, transitional and turbulent flows. J. Comput. Phys. 256, 254–276 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  81. Tsoutsanis, P.: Stencil selection algorithms for WENO schemes on unstructured meshes. Journal of Computational Physics: X 4, 100037 (2019)

    MathSciNet  Google Scholar 

  82. Tsoutsanis, P., Antoniadis, A.F., Jenkins, K.W.: Improvement of the computational performance of a parallel unstructured WENO finite volume CFD code for Implicit Large Eddy Simulation. Computers & Fluids 173, 157–170 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  83. Jiang, G.S., Shu, C.-W.: Efficient Implementation of Weighted ENO Schemes. J. Comput. Phys. 126(1), 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  84. Fu, L.: A low-dissipation finite-volume method based on a new TENO shock-capturing scheme. Comput. Phys. Commun. 235, 25–39 (2019)

    Article  MathSciNet  Google Scholar 

  85. Fu, L.: A very-high-order TENO scheme for all-speed gas dynamics and turbulence. Comput. Phys. Commun. 244, 117–131 (2019)

    Article  MathSciNet  Google Scholar 

  86. Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227, 3191–3211 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  87. Toro, E.F.: Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Springer Science & Business Media (2013)

  88. Harten, A., Lax, P.D., Leer, B.V.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25(1), 35–61 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  89. Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4(1), 25–34 (1994)

    Article  MATH  Google Scholar 

  90. Einfeldt, B., Munz, C.-D., Roe, P.L., Sjögreen, B.: On Godunov-type methods near low densities. J. Comput. Phys. 92(2), 273–295 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  91. Batten, P., Clarke, N., Lambert, C., Causon, D.: On the choice of wavespeeds for the HLLC Riemann solver. SIAM J. Sci. Comput. 18(6), 1553–1570 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  92. Titarev, V., Tsoutsanis, P., Drikakis, D.: WENO schemes for mixed-element unstructured meshes. Communications in Computational Physics 8(3), 585 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  93. Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43(2), 357–372 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  94. LeVeque, R.J.: High-resolution conservative algorithms for advection in incompressible flow. SIAM J. Numer. Anal. 33(2), 627–665 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  95. Dumbser, M., Boscheri, W., Semplice, M., Russo, G.: Central weighted ENO schemes for hyperbolic conservation laws on fixed and moving unstructured meshes. SIAM J. Sci. Comput. 39(6), A2564–A2591 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  96. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes, ii. J. Comput. Phys. 83, 32–78 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  97. San, O., Kara, K.: Evaluation of Riemann flux solvers for WENO reconstruction schemes: Kelvin-Helmholtz instability. Computers & Fluids 117, 24–41 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  98. Ryu, D., Jones, T.W., Frank, A.: The magnetohydrodynamic Kelvin-Helmholtz instability: A three-dimensional study of nonlinear evolution. Astrophys J 545(1), 475 (2000)

    Article  Google Scholar 

  99. Woodward, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  100. Tsoutsanis, P.: Extended bounds limiter for high-order finite-volume schemes on unstructured meshes. J. Comput. Phys. 362, 69–94 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Lin Fu acknowledges the fund from Guangdong Basic and Applied Basic Research Foundation (No. 2022A1515011779) and the fund from Key Laboratory of Computational Aerodynamics, AVIC Aerodynamics Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Fu.

Ethics declarations

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Z., Liang, T. & Fu, L. A Class of New High-order Finite-Volume TENO Schemes for Hyperbolic Conservation Laws with Unstructured Meshes. J Sci Comput 92, 61 (2022). https://doi.org/10.1007/s10915-022-01925-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01925-5

Keywords

Navigation