Skip to main content
Log in

A Decision-Making Machine Learning Approach in Hermite Spectral Approximations of Partial Differential Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The accuracy and effectiveness of Hermite spectral methods for the numerical discretization of partial differential equations on unbounded domains are strongly affected by the amplitude of the Gaussian weight function employed to describe the approximation space. This is particularly true if the problem is under-resolved, i.e., there are no enough degrees of freedom. The issue becomes even more crucial when the equation under study is time-dependent, forcing in this way the choice of Hermite functions where the corresponding weight depends on time. In order to adapt dynamically the approximation space, it is here proposed an automatic decision-making process that relies on machine learning techniques, such as deep neural networks and support vector machines. The algorithm is numerically tested with success on a simple 1D problem, but the main goal is its exportability in the context of more serious applications. As a matter of fact we also show at the end an application in the framework of plasma physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bittencourt, J.A.: Fundamentals of Plasma Physics. Springer, New York (2004)

    Book  MATH  Google Scholar 

  2. Camporeale, E., Delzanno, G.L., Lapenta, G., Daughton, W.: New approach for the study of linear Vlasov stability of inhomogeneous systems. Phys. Plasmas 13(9), 092110 (2006)

    Article  MathSciNet  Google Scholar 

  3. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 1–27 (2011)

    Article  Google Scholar 

  4. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 2, 303–314 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Delzanno, G.L.: Multi-dimensional, fully-implicit, spectral method for the Vlasov–Maxwell equations with exact conservation laws in discrete form. J. Comput. Phys. 301, 338–356 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Delzanno, G.L., Manzini, G., Pagliantini, C., Markidis, S.: Physics-based adaptivity of a spectral method for the Vlasov–Poisson equations based on the asymmetrically-weighted Hermite expansion in velocity space. Tech. Report (unpublished) LA-UR-19-29686, Los Alamos National Laboratory, Los Alamos, New Mexico, USA (2019)

  7. Delzanno, G.L., Roytershtein, V.: Spectral approach to plasma kinetic simulation based on Hermite decomposition in velocity space. Front. Astron. Space Sci. (2018)

  8. Drucker, H., Burges, C.J.C., Kaufman, L., Smola, A., Vapnik, V.: Support vector regression machines. Adv. Neural Inf. Process. Syst. 9, 11 (2003)

    Google Scholar 

  9. Fatone, L., Funaro, D., Manzini, G.: Arbitrary-order time-accurate semi-Lagrangian spectral approximations of the Vlasov–Poisson system. J. Comput. Phys. 384, 349–375 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fatone, L., Funaro, D., Manzini, G.: A semi-Lagrangian spectral method for the Vlasov–Poisson system based on Fourier, Legendre and Hermite polynomials. Comm. Appl. Math. Comput. 1, 333–360 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fatone, L., Funaro, D., Manzini, G.: On the use of Hermite functions for the Vlasov–Poisson system. In: Sherwin, S.J., Moxey, D., Peirã, J., Vincent, P.E., Schwab, C. (Eds.) Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018. Lecture Notes in Computational Science and Engineering, vol. 134, pp. 143–153 (2020)

  12. Funaro, D.: Polynomial Approximation of Differential Equations, vol. 8. Springer, Berlin (1992)

    MATH  Google Scholar 

  13. Funaro, D., Kavian, O.: Approximation of some diffusion evolution equations in unbounded domains by Hermite functions. Math. Comput. 57(196), 597–619 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Funaro, D., Manzini, G.: Stability and conservation properties of Hermite-based approximations of the Vlasov–Poisson system. J. Sci. Comput. 88, 29 (2021)

  15. Gottlieb, D., Orszag, S.A.: Numerical analysis of spectral methods. Theory and applications. Society for Industrial and Applied Mathematics (1977)

  16. Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2(4), 331–407 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guo, B.-Y.: Error estimation of Hermite spectral method for nonlinear partial differential equations. Math. Comput. 68(227), 1067–1078 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Guyon, I., Boser, B., Vapnik, V.: Automatic capacity tuning of very large VC-dimension classifiers. In: Cowan, J.D., Hanson, S.J., Giles, C.L. (Eds.) Advances in Neural Information Processing Systems, pp. 147–155. Morgan Kaufmann (1993)

  19. Hofmann, T., Schölkopf, B., Smola, A.J.: Kernel methods in machine learning. Ann. Stat. 36, 1171–1220 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hu, Z., Cai, Z., Wang, Y.: Numerical simulation of microflows using Hermite spectral methods. SIAM J. Sci. Comput. 42, B105–B134 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jin, X., Cai, S., Li, H., Karniadakis, G.E.: NSFnets (Navier–Stokes flow nets): physics-informed neural networks for the incompressible Navier–Stokes equations. J. Comput. Phys. 66, 109951 (2020)

    MathSciNet  MATH  Google Scholar 

  22. Karniadakis, G.E., Hesthaven, J.: Machine learning for physical systems (special issue). J. Comput. Phys. 6, 66 (2019)

    Google Scholar 

  23. Kelley, C.T.: Iterative Methods for Optimization. SIAM, Philadelphia (1999)

    Book  MATH  Google Scholar 

  24. Kharazmi, E., Zhang, Z., Karniadakis, G.E.: Variational physics-informed neural networks for solving partial differential equations (2019). arXiv:1912.00873

  25. Luo, X., Yau, S.-T., Yau, S.S.-T.: Time-dependent Hermite–Galerkin spectral method and its applications. Appl. Math. Comput. 264(C), 378–391 (2015)

    MathSciNet  MATH  Google Scholar 

  26. Ma, H., Sun, W., Tang, T.: Hermite spectral methods with a time-dependent scaling for parabolic equations in unbounded domains. SIAM J. Numer. Anal. 43(1), 58–75 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Manzini, G., Delzanno, G.L., Vencels, J., Markidis, S.: A Legendre–Fourier spectral method with exact conservation laws for the Vlasov–Poisson system. J. Comput. Phys. 317, 82–107 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Manzini, G., Funaro, D., Delzanno, G.L.: Convergence of spectral discretizations of the Vlasov–Poisson system. SIAM J. Numer. Anal. 55(5), 2312–2335 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nguyen-Thien, T., Tran-Cong, T.: Approximation of functions and their derivatives: a neural network implementation with applications. Appl. Math. Model. 23, 687–704 (1999)

    Article  MATH  Google Scholar 

  30. Pang, G., D’Elia, M., Parks, M., Karniadakis, G.E.: nPINNs: nonlocal physics-informed neural networks for a parametrized nonlocal universal Laplacian operator. Algorithms and applications. J. Comput. Phys. 66, 109760 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pinkus, A.: Approximation theory of the MLP model in neural networks. Acta Numer. 8, 143–195 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378(1), 686–707 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ramuhalli, P., Udpa, L., Udpa, S.S.: Finite-element neural networks for solving differential equations. IEEE Trans. Neural Netw. 16, 1381–1392 (2005)

    Article  Google Scholar 

  34. Schölkopf, B., Burges, C., Vapnik, V.: Incorporating invariances in support vector learning machines. In: von der Malsburg, C., von Seelen, W., Vorbrüggen, J.C., Sendhoff, B. (eds.) Artificial Neural Networks ICANN-96. Lecture Notes in Computer Science, vol. 1112, pp. 47–52. Springer, Berlin (1996)

    Chapter  Google Scholar 

  35. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond. Adaptive Computation and Machine Learning. MIT Press, Cambridge (2009)

    Google Scholar 

  36. Schumer, J.W., Holloway, J.P.: Vlasov simulations using velocity-scaled Hermite representations. J. Comput. Phys. 144(2), 626–661 (1998)

    Article  MATH  Google Scholar 

  37. Shen, J., Tang, T., Wang, L.-L.: Spectral Methods: Algorithms, Analysis and Applications, 1st edn. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  38. Shin, Y., Darbon, J., Karniadakis, G.E.: On the convergence of physics informed neural networks for linear second-order elliptic and parabolic type pdes. Commun. Comput. Phys. 28(5), 2042–2074 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sirignano, J., Spiliopoulos, K.: DGM: a deep learning algorithm for solving partial differential equations. J. Comput. Phys. 66, 1339–1364 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput. 14, 199–222 (2004)

    Article  MathSciNet  Google Scholar 

  41. Stoffel, M., Bamer, F., Markert, B.: Artificial neural networks and intelligent finite elements in non-linear structural mechanics. Thin-Walled Struct. 131, 102–106 (2018)

    Article  Google Scholar 

  42. Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9, 293–300 (1999)

    Article  Google Scholar 

  43. Tang, T.: The Hermite spectral method for Gaussian-type functions. SIAM J. Sci. Comput. 14(3), 594–606 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  44. Vapnik, V.: The support vector method of function estimation. In: Suykens, J.A.K., Vandewalle, J. (eds.) Nonlinear Modeling. Advanced Black–Box Techniques, Chapter 3, pp. 55–85. Springer, Berlin (1998)

    Chapter  Google Scholar 

  45. Vapnik, V., Chervonenkis, A.Y.: On a class of perceptrons. Autom. Remote Control 25(1), 103–109 (1964)

    MATH  Google Scholar 

  46. Vapnik, V., Kotz, S.: Estimation of Dependences Based on Empirical Data. Springer Series in Statistics, 1st edn. Springer, Berlin (1982)

    MATH  Google Scholar 

  47. Vapnik, V., Lerner, A.: Pattern recognition using generalized portrait method. Autom. Remote Control 24, 774–780 (1963)

    Google Scholar 

  48. Vapnik, V.N.: The Nature of Statistical Learning Theory, 2nd edn. Springer, New York (2000)

    Book  MATH  Google Scholar 

  49. Vencels, J., Delzanno, G.L., Manzini, G., Markidis, S., Bo Peng, I., Roytershteyn, V.: SpectralPlasmaSolver: a spectral code for multiscale simulations of collisionless, magnetized plasmas. J. Phys. Conf. Ser. 719(1), 012022 (2016)

    Article  Google Scholar 

  50. Wang, T.-J., Zhang, C., Zhang, Q.: Mixed spectral method for heat transfer using generalised Hermite functions and Legendre polynomials. East Asian J. Appl. Math. 6, 448–465 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  51. Yadav, Y., Yadav, A., Kumar, M.: An Introduction to Neural Network Methods for Differential Equations. Springer Briefs in Applied Sciences and Technology/Springer Briefs in Computational Intelligence, 1st edn. Springer, Berlin (2015)

    MATH  Google Scholar 

Download references

Acknowledgements

The Authors are grateful to Dr. G. L. Delzanno (LANL) and Prof. C. Pagliantini for many fruitful discussions and suggestions. The Authors are affiliated to GNCS-INdAM (Italy). The third author was supported by the LDRD program of Los Alamos National Laboratory under Project Number 20170207ER. Los Alamos National Laboratory is operated by Triad National Security, LLC, for the National Nuclear Security Administration of U.S. Department of Energy (Contract No. 89233218CNA000001). This article is registered as LA-UR-21-22934.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Fatone.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We begin by collecting some basic relations concerning Hermite polynomials. We denote with a prime the derivative of a given Hermite polynomial with respect to the argument \(\zeta \). Thus, the first and the second derivatives of the \(\ell \)-th Hermite polynomial, for \(\ell \ge 2\), are given by:

$$\begin{aligned} H^{\prime }_{\ell }(\zeta )=2\ell H_{\ell -1}(\zeta ),\qquad \qquad H^{\prime \prime }_{\ell }(\zeta ) = 4\ell (\ell -1)H_{\ell -2}(\zeta ). \end{aligned}$$
(63)

In addition, we have: \(H'_0(\zeta )=0, H'_1(\zeta )=2\), \(H''_0(\zeta )=0, H''_1(\zeta )=0\), so that (63) formally holds for any \(\ell \ge 0\). Useful recursive relations are:

$$\begin{aligned} 2\zeta H^{\prime }_{\ell }(\zeta )&= H^{\prime \prime }_{\ell }(\zeta ) + 2\ell H_{\ell }(\zeta ) = {\left\{ \begin{array}{ll} 2\ell H_{\ell }(\zeta ) , &{} \ell <2,\\ 4\ell (\ell -1)H_{\ell -2}(\zeta ) + 2\ell H_{\ell }(\zeta ) ,&{} \ell \ge 2. \end{array}\right. } \end{aligned}$$
(64)
$$\begin{aligned} \zeta H_{\ell }(\zeta )&= \frac{1}{4(\ell +1)}\,2\zeta H^{\prime }_{\ell +1}(\zeta ) = \frac{1}{4(\ell +1)}\Big [4(\ell +1)\ell H_{\ell -1}(\zeta ) + 2(\ell +1)H_{\ell +1}(\zeta )\Big ]\nonumber \\&= \ell H_{\ell -1}(\zeta ) + \frac{1}{2}H_{\ell +1}(\zeta ) , \qquad \ell \ge 1. \end{aligned}$$
(65)

For completeness, we note that for \(\ell =0\) it holds \(\zeta H_{0}(\zeta )=H_{1}(\zeta )/2\).

We now go through the computations relative to the three formulations (5), (15), (16). We start with the second one. We recall that \(\alpha \) depends on t and we denote by \(\alpha '\) its derivative. Concerning Hermite polynomials, the prime will continue to denote the derivative with respect to \(\zeta \). We substitute the definitions (11),  (9) and we split the integral in three parts that will be computed separately:

$$\begin{aligned} \int _{\mathbbm {R}}\partial _tu_N\,\phi _{m}\,dx&= \int _{\mathbbm {R}} \frac{\partial _tw_{\alpha }(x,t)}{\sqrt{\pi }}\left[ \sum _{\ell =0}^{N} {{\widehat{u}}}_{\ell }(t)H_{\ell }\big (\alpha x\big )\right] \frac{\alpha }{2^m\,m!}H_{m}\big (\alpha x\big )\,dx\nonumber \\&\quad + \int _{\mathbbm {R}} \frac{w_{\alpha }(x,t)}{\sqrt{\pi }}\sum _{\ell =0}^{N}\bigg [ \Big (\partial _t{{\widehat{u}}}_{\ell }(t)\Big )H_{\ell }\big (\alpha x\big ) + {{\widehat{u}}}_{\ell }(t)\,\alpha 'xH^{\prime }_{\ell }\big (\alpha x\big ) \bigg ] \frac{\alpha }{2^m\,m!}H_{m}\big (\alpha x\big )\,dx\nonumber \\&= \frac{\alpha }{2^m\,m!\sqrt{\pi }}(-2\alpha \alpha ^{\prime }) \sum _{\ell =0}^{N}{{\widehat{u}}}_{\ell }(t)\int _{\mathbbm {R}}x^2w_{\alpha }(x,t) H_{\ell }(\alpha x)H_{m}(\alpha x)\,dx\nonumber \\&\quad + \frac{1}{2^{m}\,m!\,\sqrt{\pi }} \sum _{\ell =0}^{N}\left[ \partial _t{{\widehat{u}}}_{\ell }(t)\int _{\mathbbm {R}}w_{\alpha }(x,t)H_{\ell }\big (\alpha x\big )H_{m}\big (\alpha x\big )\,\alpha \,dx\right. \nonumber \\&\quad \left. +{{\widehat{u}}}_{\ell }\alpha ^{\prime }\int _{\mathbbm {R}}w_{\alpha }(x,t)\,xH^{\prime }_{\ell } \big (\alpha x\big )\,H_{m}\big (\alpha x\big )\,\alpha \,dx\right] = \mathbf (I) + \mathbf (II) + \mathbf (III) . \end{aligned}$$
(66)

To compute (I), we substitute \(\zeta =\alpha x\) and use the orthogonality properties of the Hermite polynomials to find that:

$$\begin{aligned} \mathbf (I)&= \frac{1}{2^m\,m!\sqrt{\pi }}\frac{-2\alpha ^{\prime }}{\alpha } \sum _{\ell =0}^{N}{{\widehat{u}}}_{\ell }(t)\int _{\mathbbm {R}}(\alpha x)^2 \exp {\big (-(\alpha x)^2\big )}H_{\ell }(\alpha x)H_{m}(\alpha x)\alpha \,dx\\&= -\frac{\alpha ^{\prime }}{\alpha } \Big [(2m+1)\,{{\widehat{u}}}_{m}(t)+2(m+2)(m+1)\,{{\widehat{u}}}_{m+2}(t) +\frac{1}{2}{{\widehat{u}}}_{m-2}(t)\Big ]. \end{aligned}$$

To compute the term (II), we substitute \(\zeta =\alpha x\) and use the orthogonality properties:

$$\begin{aligned} \mathbf (II) = \frac{1}{2^{m}\,m!\,\sqrt{\pi }}\sum _{\ell =0}^{N}\partial _t{{\widehat{u}}}_{\ell }(t) \int _{\mathbbm {R}}\exp (-\zeta ^2)H_{\ell }(\zeta )H_{m}(\zeta )\,d\zeta = \partial _t{{\widehat{u}}}_{m}(t) . \end{aligned}$$

To compute term (III) we use (63) and the orthogonality of Hermite polynomials:

$$\begin{aligned} \mathbf (III)&= \frac{1}{2^{m}\,m!\,\sqrt{\pi }}\sum _{\ell =0}^{N}{{\widehat{u}}}_{\ell }(t)\frac{\alpha ^{\prime }}{\alpha } \int _{\mathbbm {R}}\exp (-\zeta ^2)\,\zeta H^{\prime }_{\ell }(\zeta )H_{m}(\zeta )\,d\zeta \\&= \frac{1}{2^{m}\,m!}\sum _{\ell =0}^{N}{{\widehat{u}}}_{\ell }(t)\frac{\alpha ^{\prime }}{\alpha }\Big [ 2\ell m\,2^{m-1}(m-1)!\,\delta _{\ell -1,m-1} + \ell \,2^{m+1}(m+1)!\,\delta _{\ell -1,m+1}\Big ]\\&= \frac{\alpha ^{\prime }}{\alpha }\Big [ m{{\widehat{u}}}_{m}(t) + 2(m+2)(m+1){{\widehat{u}}}_{m+2}(t) \Big ]. \end{aligned}$$

By collecting the results for \(\mathbf (I) , \mathbf (II) \), and \(\mathbf (III) \), we find out that:

$$\begin{aligned} \mathbf (I) + \mathbf (II) + \mathbf (III) = \partial _t{{\widehat{u}}}_{m}(t) + \frac{\alpha ^{\prime }}{\alpha }\Big [ -(m+1){{\widehat{u}}}_{m}(t) - \frac{1}{2}{{\widehat{u}}}_{m-2}(t) \Big ]. \end{aligned}$$
(67)

In a similar fashion, we split the integral of the second derivative of \(u_N\) against the test function into three parts:

$$\begin{aligned} \int _{\mathbbm {R}}\partial _{xx}u_N\phi _{m}\,dx&= \int _{\mathbbm {R}}\partial _{xx}w_{\alpha }(x,t) \bigg [\frac{1}{\sqrt{\pi }}\sum _{\ell =0}^{N}{{\widehat{u}}}_{\ell }(t)H_{\ell }(\alpha x)\bigg ]\, \bigg [\frac{\alpha }{2^m\,m!}H_{m}\big (\alpha x\big )\bigg ]\,dx\nonumber \\&\quad + \frac{1}{\sqrt{\pi }} \int _{\mathbbm {R}} \bigg [2\partial _xw_{\alpha }(x,t)\sum _{\ell =0}^{N}{{\widehat{u}}}_{\ell }(t)\partial _xH_{\ell }(\alpha x)\bigg ] \bigg [\frac{\alpha }{2^m\,m!}H_{m}\big (\alpha x\big )\bigg ] \,dx\nonumber \\&\quad + \frac{1}{\sqrt{\pi }}\frac{\alpha }{2^m\,m!} \int _{\mathbbm {R}} \bigg [w_{\alpha }(x,t)\sum _{\ell =0}^{N}{{\widehat{u}}}_{\ell }(t)\partial _{xx}H_{\ell }(\alpha x)\bigg ]\, \bigg [H_{m}\big (\alpha x\big )\bigg ]\,dx\nonumber \\&= \mathbf (A) + \mathbf (B) + \mathbf (C) . \end{aligned}$$

Using the properties of Hermite polynomials, we evaluate these terms as follows:

$$\begin{aligned} \mathbf (A)&= 2\alpha ^2\bigg [ 2m{{\widehat{u}}}_{m}(t) + 2(m+2)(m+1){{\widehat{u}}}_{m+2}(t) +\frac{1}{2}{{\widehat{u}}}_{m-2}(t) \bigg ],\\ \mathbf (B)&= -4\alpha ^2\Big [m{{\widehat{u}}}_{m}(t) + 2(m+2)(m+1){{\widehat{u}}}_{m+2}(t)\Big ],\\ \mathbf (C)&= 4(m+2)(m+1)\alpha ^2{{\widehat{u}}}_{m+2}(t). \end{aligned}$$

Putting all together we arrive at:

$$\begin{aligned} \mathbf (A) +\mathbf (B) +\mathbf (C)&= 2\alpha ^2\Big [ 2m{{\widehat{u}}}_{m}(t) + 2(m+2)(m+1){{\widehat{u}}}_{m+2}(t) +\frac{1}{2}{{\widehat{u}}}_{m-2}(t) \Big ] \nonumber \\&\quad -4\alpha ^2\Big [m{{\widehat{u}}}_{m}(t) + 2(m+2)(m+1){{\widehat{u}}}_{m+2}(t)\Big ] \nonumber \\&\quad +4(m+2)(m+1)\alpha ^2{{\widehat{u}}}_{m+2}(t) = \alpha ^2{{\widehat{u}}}_{m-2}(t). \end{aligned}$$
(68)

By equating (67) and (68) we finally obtain the scheme (14).

We then examine the scheme originating from (5). We must compute:

$$\begin{aligned} \int _{\mathbbm {R}}\frac{\partial u_N}{\partial x}\, \frac{\partial \phi _{m}}{\partial x}\,dx&= \frac{1}{\sqrt{\pi }}\,\frac{\alpha }{2^{m}\,m!} \sum _{\ell =0}^{N}{{\widehat{u}}}_{\ell }(t) \int _{\mathbbm {R}}\partial _x\Big (w_{\alpha }(x,t)H_{\ell }(\alpha x)\Big )\,\partial _xH_{m}(\alpha x)\,\,dx\nonumber \\&=\frac{1}{\sqrt{\pi }}\,\frac{\alpha }{2^{m}\,m!} \sum _{\ell =0}^{N}{{\widehat{u}}}_{\ell }(t)\bigg [ \int _{\mathbbm {R}}\big (\partial _xw_{\alpha }(x,t)\big )H_{\ell } (\alpha x)\,\partial _xH_{m}(\alpha x)\,\,dx\nonumber \\&\quad +\int _{\mathbbm {R}}w_{\alpha }(x,t)\partial _xH_{\ell }\big (\alpha x)\,\partial _xH_{m} \big (\alpha x\big )\,\,dx\bigg ]\nonumber \\&=\frac{1}{\sqrt{\pi }}\,\frac{\alpha }{2^{m}\,m!} \sum _{\ell =0}^{N}{{\widehat{u}}}_{\ell }(t)\bigg [ -2\alpha \int _{\mathbbm {R}}\big (\alpha x\big )w_{\alpha }(x,t) H_{\ell }(\alpha x)\,2mH_{m-1}(\alpha x)\,\alpha \,dx\nonumber \\&\quad +\alpha \int _{\mathbbm {R}}w_{\alpha }(x,t)H^{\prime }_{\ell }(\alpha x) \,H^{\prime }_{m}(\alpha x)\,\alpha \,dx\bigg ]\nonumber \\&=\frac{1}{\sqrt{\pi }}\,\frac{\alpha ^2}{2^{m}\,m!} \sum _{\ell =0}^{N}{{\widehat{u}}}_{\ell }(t)\bigg [ -4m\int _{\mathbbm {R}}\zeta H_{\ell }(\zeta ) H_{m-1}(\zeta )e^{-\zeta ^2}\,d\zeta \nonumber \\&\quad +\int _{\mathbbm {R}}\exp {(-\zeta ^2)}\,H^{\prime }_{\ell }(\zeta )\,H^{\prime }_{m} (\zeta )e^{-\zeta ^2}\,d\zeta \bigg ]\nonumber \\&= \alpha ^2\Big ( -2m\,{{\widehat{u}}}_{m}(t)-\,{{\widehat{u}}}_{m-2}(t) \Big ) + \alpha ^2\Big ( 2m\,{{\widehat{u}}}_{m}(t) \Big ) = - \alpha ^2 {{\widehat{u}}}_{m-2}(t). \end{aligned}$$
(69)

By changing the sign of the last term in (69) we exactly get the same result in (68) which brings again to the scheme (14).

We finally examine the scheme originating from (16). The first integral is clearly equal to \({{\widehat{u}}}_{m}(t)\). Successively, we evaluate:

$$\begin{aligned} \int _{\mathbbm {R}}u_N\,\frac{\partial ^2\phi _{m}}{\partial x^2}\,\,dx&=\alpha ^2\int _{\mathbbm {R}}u_N\,\phi _{m-2}\,\,dx\\&= \alpha ^2\frac{1}{\sqrt{\pi }}\,\frac{\alpha }{2^{m-2}(m-2)!} \sum _{\ell =0}^{N}{{\widehat{u}}}_{\ell }(t) \int _{\mathbbm {R}}w_{\alpha }(x,t)H_{\ell }(\alpha x)\,H_{m-2}(\alpha x)\,\,dx\\&= \frac{\alpha ^2}{\sqrt{\pi }}\frac{1}{2^{m-2}(m-2)!}\sum _{\ell =0}^{N}{{\widehat{u}}}_{\ell }(t) \int _{\mathbbm {R}}H_{\ell }(\zeta )H_{m-2}(\zeta )e^{-\zeta ^2}\,d\zeta \\&= \frac{\alpha ^2}{2^{m-2}(m-2)!\sqrt{\pi }}\sum _{\ell =0}^{N} {{\widehat{u}}}_{\ell }(t)\,2^{m-2}(m-2)!\sqrt{\pi }\delta _{\ell ,m-2} = \alpha ^2{{\widehat{u}}}_{m-2}(t). \end{aligned}$$

Regarding the last integral, we split it into two parts:

$$\begin{aligned} \int _{\mathbbm {R}}u_N\,\frac{\partial \phi _{m}}{\partial t}\,\,dx&= \frac{1}{\sqrt{\pi }}\,\frac{1}{2^{m}\,m!}\sum _{\ell =0}^{N}{{\widehat{u}}}_{\ell }(t) \int _{\mathbbm {R}}w_{\alpha }(x,t)H_{\ell }(\alpha x)\,\partial _t\Big (\alpha H_{m}(\alpha x)\Big )\,dx\nonumber \\&=\frac{1}{\sqrt{\pi }}\,\frac{1}{2^{m}\,m!}\sum _{\ell =0}^{N}{{\widehat{u}}}_{\ell }(t) \int _{\mathbbm {R}}w_{\alpha }(x,t)H_{\ell }(\alpha x)\, \Big (\alpha ^{\prime }H_{m}(\alpha x)+\alpha \alpha ^{\prime }xH^{\prime }_{m}(\alpha x)\Big )\,dx\nonumber \\&= \frac{1}{\sqrt{\pi }}\,\frac{1}{2^{m}\,m!} \,\frac{\alpha ^{\prime }}{\alpha }\sum _{\ell =0}^{N}{{\widehat{u}}}_{\ell }(t) \bigg [ \int _{\mathbbm {R}}H_{\ell }(\zeta )H_{m}(\zeta )e^{-\zeta ^2}\,d\zeta \nonumber \\&\quad + \int _{\mathbbm {R}}H_{\ell }(\zeta )\,\zeta H^{\prime }_{m}(\zeta )e^{-\zeta ^2}\,d\zeta \bigg ]\nonumber \\&= \mathbf (I) + \mathbf (II) . \end{aligned}$$
(70)

These are finally evaluated as follows:

$$\begin{aligned} \mathbf (I)&= \frac{1}{\sqrt{\pi }}\,\frac{1}{2^{m}\,m!} \frac{\alpha ^{\prime }}{\alpha } \sum _{\ell =0}^{N}{{\widehat{u}}}_{\ell }(t)\big (2^{m}\, m!\sqrt{\pi }\big )\delta _{\ell ,m} = \frac{\alpha ^{\prime }(t)}{\alpha }{{\widehat{u}}}_{m}.\nonumber \\ \mathbf (II)&= \frac{1}{\sqrt{\pi }}\,\frac{1}{2^{m}\,m!} \,\frac{\alpha ^{\prime }}{\alpha }\sum _{\ell =0}^{N}{{\widehat{u}}}_{\ell }(t) \bigg [ \int _{\mathbbm {R}}H_{\ell }(\zeta )\,\zeta H^{\prime }_{m}(\zeta )e^{-\zeta ^2}\,d\zeta \bigg ]\nonumber \\&= \frac{1}{\sqrt{\pi }}\,\frac{1}{2^{m}\,m!} \frac{\alpha ^{\prime }}{\alpha } \sum _{\ell =0}^{N}{{\widehat{u}}}_{\ell }(t) \big (2^{\ell }\,\ell !\sqrt{\pi }\big ) \bigg [ 2m(m-1)\delta _{m-2,\ell } + m\delta _{\ell ,m} \bigg ]\nonumber \\&= \frac{1}{\sqrt{\pi }}\,\frac{1}{2^{m}\,m!} \frac{\alpha ^{\prime }}{\alpha } \big (2^{m-2}\,(m-2)!\sqrt{\pi }\big ) \bigg [ 2m(m-1) {{\widehat{u}}}_{m-2}(t) + \big (2^{m}\,m!\sqrt{\pi }\big )\,m{{\widehat{u}}}_{m}(t) \bigg ]\nonumber \\&= \frac{\alpha ^{\prime }}{\alpha }\bigg [ \frac{1}{2}{{\widehat{u}}}_{m-2}(t) + m{{\widehat{u}}}_{m}(t) \bigg ]. \end{aligned}$$
(71)

The final result of all these computations is again the scheme (14).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatone, L., Funaro, D. & Manzini, G. A Decision-Making Machine Learning Approach in Hermite Spectral Approximations of Partial Differential Equations. J Sci Comput 92, 3 (2022). https://doi.org/10.1007/s10915-022-01853-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01853-4

Keywords

Mathematics Subject Classification

Navigation