Skip to main content
Log in

A New Approach for Designing Moving-Water Equilibria Preserving Schemes for the Shallow Water Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We construct a new second-order moving-water equilibria preserving central-upwind scheme for the one-dimensional Saint-Venant system of shallow water equations. The idea is based on a reformulation of the source terms as integral in the flux function. Reconstruction of the flux variable yields then a third order equation that can be solved exactly. This procedure does not require any further modification of existing schemes. Several numerical tests are performed to verify the ability of the proposed scheme to accurately capture small perturbations of steady states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Audusse, E., Bouchut, F., Bristeau, M.-O., Klein, R., Perthame, B.: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25, 2050–2065 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berthon, C., Marche, F., Turpault, R.: An efficient scheme on wet/dry transitions for shallow water equations with friction. Comput. Fluids 48, 192–201 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bollermann, A., Chen, G., Kurganov, A., Noelle, S.: A well-balanced reconstruction for wet/dry fronts for the shallow water equations. J. Sci. Comput. 56, 267–290 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bollermann, A., Noelle, S., Lukáčová-Medvid’ová, M.: Finite volume evolution Galerkin methods for the shallow water equations with dry beds. Commun. Comput. Phys. 10, 371–404 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bouchut, F., Morales, T.: A subsonic-well-balanced reconstruction scheme for shallow water flows. SIAM J. Numer. Anal. 48, 1733–1758 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bryson, S., Epshteyn, Y., Kurganov, A., Petrova, G.: Well-balanced positivity preserving central-upwind scheme on triangular grids for the Saint-Venant system. M2AN Math. Model. Numer. Anal. 45, 423–446 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Castro, M.J., López-García, J.A., Parés, C.: High order exactly well-balanced numerical methods for shallow water systems. J. Comput. Phys. 246, 242–264 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Castro Díaz, M. J., Kurganov, A., Morales de Luna, T.: Path-conservative central-upwind schemes for nonconservative hyperbolic systems. ESAIM Math. Model. Numer. Anal. To appear

  9. Cea, L., Vázquez-Cendón, M.E.: Unstructured finite volume discretisation of bed friction and convective flux in solute transport models linked to the shallow water equations. J. Comput. Phys. 231, 3317–3339 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cheng, Y., Kurganov, A.: Moving-water equilibria preserving central-upwind schemes for the shallow water equations. Commun. Math. Sci. 14, 1643–1663 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chertock, A., Cui, S., Kurganov, A., Özcan, Ş.N., Tadmor, E.: Well-balanced schemes for the Euler equations with gravitation: conservative formulation using global fluxes. J. Comput. Phys. 358, 36–52 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chertock, A., Cui, S., Kurganov, A., Tong, W.: Steady state and sign preserving semi-implicit Runge–Kutta methods for ODEs with stiff damping term. SIAM J. Numer. Anal. 53, 1987–2008 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chertock, A., Cui, S., Kurganov, A., Wu, T.: Well-balanced positivity preserving central-upwind scheme for the shallow water system with friction terms. Int. J. Numer. Meth. Fluids 78, 355–383 (2015)

    Article  MathSciNet  Google Scholar 

  14. Chertock, A., Dudzinski, M., Kurganov, A., Lukáčová-Medvid’ová, M.: Well-balanced schemes for the shallow water equations with Coriolis forces. Numer. Math. 138, 939–973 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chertock, A., Herty, M., Özcan, Ş. N.: Well-balanced central-upwind schemes for \(2\times 2\) systems of balance laws. In: Klingenberg, C., Westdickenberg, M. (eds.) Theory, Numerics and Applications of Hyperbolic Problems I, vol. 236 of Springer Proceedings in Mathematics and Statistics, Springer International Publishing, pp. 345–361 (2018)

  16. de Saint-Venant, A.: Thèorie du mouvement non-permanent des eaux, avec application aux crues des rivière at à l’introduction des marèes dans leur lit., C.R. Acad. Sci. Paris, vol. 73, pp. 147–154 (1871)

  17. Gallardo, J., Parés, C., Castro, M.: On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas. J. Comput. Phys. 227, 574–601 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gosse, L.: A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms. Comput. Math. Appl. 39, 135–159 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Goutal, N., Maurel, F.: Proceedings of the second workshop on dam-break wave simulation, tech. report, Technical Report HE-43/97/016/A, Electricité de France, Département Laboratoire National d’Hydraulique, Groupe Hydraulique Fluviale, (1997)

  20. Jin, S., Wen, X.: Two interface-type numerical methods for computing hyperbolic systems with geometrical source terms having concentrations. SIAM J. Sci. Comput. 26, 2079–2101 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Khan, A., Lai, W.: Modeling Shallow Water Flows Using the Discontinuous Galerkin Method. CRC Press, Boca Raton (2014)

    Book  MATH  Google Scholar 

  22. Kurganov, A.: Finite-volume schemes for shallow-water equations. Acta Numer. 27, 289–351 (2018)

    Article  MathSciNet  Google Scholar 

  23. Kurganov, A., Levy, D.: Central-upwind schemes for the Saint-Venant system. M2AN Math. Model. Numer. Anal. 36, 397–425 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kurganov, A., Lin, C.-T.: On the reduction of numerical dissipation in central-upwind schemes. Commun. Comput. Phys. 2, 141–163 (2007)

    MathSciNet  MATH  Google Scholar 

  25. Kurganov, A., Noelle, S., Petrova, G.: Semi-discrete central-upwind scheme for hyperbolic conservation laws and Hamilton–Jacobi equations. SIAM J. Sci. Comput. 23, 707–740 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kurganov, A., Petrova, G.: A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system. Commun. Math. Sci. 5, 133–160 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kurganov, A., Polizzi, A.: Non-oscillatory central schemes for a traffic flow model with Arrhenius look-ahead dynamics. Netw. Heterog. Media 4, 416–451 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Kurganov, A., Prugger, M., Wu, T.: Second-order fully discrete central-upwind scheme for two-dimensional hyperbolic systems of conservation laws. SIAM J. Sci. Comput. 39, A947–A965 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kurganov, A., Tadmor, E.: New high resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160, 241–282 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kurganov, A., Tadmor, E.: Solution of two-dimensional riemann problems for gas dynamics without riemann problem solvers. Numer. Methods Partial Differ. Equ. 18, 584–608 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. LeVeque, R.: Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys. 146, 346–365 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Nessyahu, H., Tadmor, E.: Nonoscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87, 408–463 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  33. Noelle, S., Xing, Y., Shu, C.-W.: High-order well-balanced finite volume WENO schemes for shallow water equation with moving water. J. Comput. Phys. 226, 29–58 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Perthame, B., Simeoni, C.: A kinetic scheme for the Saint-Venant system with a source term. Calcolo 38, 201–231 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ricchiuto, M., Bollermann, A.: Stabilized residual distribution for shallow water simulations. J. Comput. Phys. 228, 1071–1115 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Russo, G.: Central schemes for conservation laws with application to shallow water equations. In: Trends and Applications of Mathematics to Mechanics. Springer Milan, pp. 225–246 (2005)

  37. Russo, G., Khe, A.: High order well balanced schemes for systems of balance laws. In: Hyperbolic Problems: Theory, Numerics and Applications, vol. 67 of Proceedings of Symposium. Applied Mathematics, American Mathematical Society, Providence, RI, pp. 919–928 (2009)

  38. Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21, 995–1011 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  39. van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979)

    Article  MATH  Google Scholar 

  40. Vazquez-Cendon, M.: Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregualr geometry. J. Comput. Phys. 148, 497–526 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  41. Xing, Y.: Exactly well-balanced discontinuous Galerkin methods for the shallow water equations with moving water equilibrium. J. Comput. Phys. 257, 536–553 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Xing, Y., Shu, C.-W.: A survey of high order schemes for the shallow water equations. J. Math. Study 47, 221–249 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Xing, Y., Shu, C.-W., Noelle, S.: On the advantage of well-balanced schemes for moving-water equilibria of the shallow water equations. J. Sci. Comput. 48, 339–349 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of A. Chertock was supported in part by NSF Grants DMS-1521051 and DMS-1818684. The work of Y. Cheng was supported in part by NSF Grant DMS-1521009. The work of A. Kurganov was supported in part by NSFC Grant 11771201 and NSF Grant DMS-1521009. The work of M. Herty was supported in part by DFG HE5386/13-15, the cluster of excellence DFG EXC128 “Integrative Production Technology for High-Wage Countries” and the BMBF project KinOpt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Kurganov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Chertock, A., Herty, M. et al. A New Approach for Designing Moving-Water Equilibria Preserving Schemes for the Shallow Water Equations. J Sci Comput 80, 538–554 (2019). https://doi.org/10.1007/s10915-019-00947-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-00947-w

Keywords

Mathematics Subject Classification

Navigation