Skip to main content
Log in

Generalized Deconvolution Procedure for Structural Modeling of Turbulence

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Approximate deconvolution forms a mathematical framework for the structural modeling of turbulence. The sub-filter scale flow quantities are typically recovered by using the Van Cittert iterative procedure. In this paper, however, we put forth a generalized approach for the iterative deconvolution process of sub-filter scale recovery of turbulent flows by introducing Krylov space iterative methods. Their accuracy and efficiency are demonstrated through a systematic a-priori analysis of solving the Kraichnan and Kolmogorov homogeneous isotropic turbulence problems in two- and three-dimensional domains, respectively. Our numerical assessments show that the conjugate gradient based iterative techniques lead to significantly improved performance over the Van Cittert procedure and offer great promise for approximate deconvolution turbulence models. In fact, our energy spectra analysis illustrates that a substantially longer inertial range can be recovered by using the proposed procedure equipped with the BiCGSTAB iterative scheme. This trend is also confirmed by capturing tails of the probability density function of turbulent flow quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Al-Ameen, Z., Sulong, G., Johar, M.G.M., Verma, N., Kumar, R., Dachyar, M., Alkhawlani, M., Mohsen, A., Singh, H., Singh, S., et al.: A comprehensive study on fast image deblurring techniques. Int. J. Adv. Sci. Technol. 44 (2012)

  2. Bardina, J., Ferziger, J.H., Reynolds, W.: Improved subgrid-scale models for large-eddy simulation. In: American Institute of Aeronautics and Astronautics, Fluid and Plasma Dynamics Conference, pp. 1–10, 13th, Snowmass, July 14–16 (1980)

  3. Batchelor, G.K.: Computation of the energy spectrum in homogeneous two-dimensional turbulence. Phys. Fluids 12(12), 233–239 (1969)

    Article  MATH  Google Scholar 

  4. Berselli, L., Iliescu, T., Layton, W.J.: Mathematics of Large Eddy Simulation of Turbulent Flows. Springer, Berlin (2006)

    MATH  Google Scholar 

  5. Bertero, M., Boccacci, P.: Introduction to Inverse Problems in Imaging. CRC Press, Boca Raton (1998)

    Book  MATH  Google Scholar 

  6. Biemond, J., Lagendijk, R.L., Mersereau, R.M.: Iterative methods for image deblurring. Proc. IEEE 78(5), 856–883 (1990)

    Article  Google Scholar 

  7. Boris, J.P., Grinstein, F.F., Oran, E.S., Kolbe, R.L.: New insights into large eddy simulation. Fluid Dyn. Res. 10(4–6), 199–228 (1992)

    Article  Google Scholar 

  8. Broyden, C.G., Vespucci, M.T.: Krylov Solvers for Linear Algebraic Systems: Krylov Solvers. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  9. Frisch, U.: Turbulence: The Legacy of AN Kolmogorov. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  10. Germano, M.: Differential filters for the large eddy numerical simulation of turbulent flows. Phys. Fluids 29, 1755–1756 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Germano, M.: Differential filters of elliptic type. Phys. Fluids 29, 1757–1758 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Germano, M.: The similarity subgrid stresses associated to the approximate Van Cittert deconvolutions. Phys. Fluids 27(3), 035111 (2015)

    Article  Google Scholar 

  13. Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59(2), 308–323 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kitsios, V., Frederiksen, J.S., Zidikheri, M.J.: Theoretical comparison of subgrid turbulence in atmospheric and oceanic quasi-geostrophic models. Nonlinear Proc. Geophys. 23(2), 95–105 (2016)

    Article  Google Scholar 

  15. Kraichnan, R.H.: Inertial ranges in two-dimensional turbulence. Phys. Fluids 10, 1417–1423 (1967)

    Article  MathSciNet  Google Scholar 

  16. Layton, W., Lewandowski, R.: A simple and stable scale-similarity model for large eddy simulation: energy balance and existence of weak solutions. Appl. Math. Lett. 16(8), 1205–1209 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Layton, W., Neda, M.: A similarity theory of approximate deconvolution models of turbulence. J. Math. Anal. Appl. 333(1), 416–429 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Layton, W.J., Rebholz, L.: Approximate Deconvolution Models of Turbulence: Analysis, Phenomenology and Numerical Analysis. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  19. Leith, C.: Atmospheric predictability and two-dimensional turbulence. J. Atmos. Sci. 28(2), 145–161 (1971)

    Article  MATH  Google Scholar 

  20. Lesieur, M., Metais, O.: New trends in large-eddy simulations of turbulence. Annu. Rev. Fluid Mech. 28(1), 45–82 (1996)

    Article  MathSciNet  Google Scholar 

  21. Maulik, R., San, O.: A stable and scale-aware dynamic modeling framework for subgrid-scale parameterizations of two-dimensional turbulence. Comput. Fluids (2016)

  22. Meneveau, C., Katz, J.: Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech. 32(1), 1–32 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Piomelli, U.: Large-eddy simulation: achievements and challenges. Prog. Aerosp. Sci. 35(4), 335–362 (1999)

    Article  Google Scholar 

  24. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  25. Sagaut, P.: Large Eddy Simulation for Incompressible Flows: An Introduction. Springer, Berlin (2006)

    MATH  Google Scholar 

  26. San, O.: Analysis of low-pass filters for approximate deconvolution closure modeling in one-dimensional decaying Burgers turbulence. Int. J. Comput. Fluid Dyn. 30, 20–37 (2016)

    Article  MathSciNet  Google Scholar 

  27. San, O., Staples, A.E.: High-order methods for decaying two-dimensional homogeneous isotropic turbulence. Comput. Fluids 63, 105–127 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. San, O., Staples, A.E., Iliescu, T.: A posteriori analysis of low-pass spatial filters for approximate deconvolution large eddy simulations of homogeneous incompressible flows. Int. J. Comput. Fluid Dyn. 29(1), 40–66 (2015)

    Article  MathSciNet  Google Scholar 

  29. Sarghini, F., Piomelli, U., Balaras, E.: Scale-similar models for large-eddy simulations. Phys. Fluids 11(6), 1596–1607 (1999)

    Article  MATH  Google Scholar 

  30. Stolz, S., Adams, N.A.: An approximate deconvolution procedure for large-eddy simulation. Phys. Fluids 11, 1699–1701 (1999)

    Article  MATH  Google Scholar 

  31. Taylor, G., Green, A.: Mechanism of the production of small eddies from large ones. Phil. Trans. R. Soc. A. 158(895), 499–521 (1937)

    MATH  Google Scholar 

  32. Van der Vorst, H.A.: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13(2), 631–644 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  33. Van der Vorst, H.A.: Iterative Krylov Methods for Large Linear Systems, vol. 13. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The computing for this project was performed by using resources from the High Performance Computing Center (HPCC) at Oklahoma State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omer San.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

San, O., Vedula, P. Generalized Deconvolution Procedure for Structural Modeling of Turbulence. J Sci Comput 75, 1187–1206 (2018). https://doi.org/10.1007/s10915-017-0583-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0583-8

Keywords

Navigation