Skip to main content
Log in

A Stable Parametric Finite Element Discretization of Two-Phase Navier–Stokes Flow

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present a parametric finite element approximation of two-phase flow. This free boundary problem is given by the Navier–Stokes equations in the two phases, which are coupled via jump conditions across the interface. Using a novel variational formulation for the interface evolution gives rise to a natural discretization of the mean curvature of the interface. The parametric finite element approximation of the evolving interface is then coupled to a standard finite element approximation of the two-phase Navier–Stokes equations in the bulk. Here enriching the pressure approximation space with the help of an XFEM function ensures good volume conservation properties for the two phase regions. In addition, the mesh quality of the parametric approximation of the interface in general does not deteriorate over time, and an equidistribution property can be shown for a semidiscrete continuous-in-time variant of our scheme in two space dimensions. Moreover, our finite element approximation can be shown to be unconditionally stable. We demonstrate the applicability of our method with some numerical results in two and three space dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Abels, H., Garcke, H., Grün, G.: Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math. Models Methods Appl. Sci. 22(3), 1150,013 (2012). doi:10.1142/S0218202511500138

    Article  Google Scholar 

  2. Aland, S., Voigt, A.: Benchmark computations of diffuse interface models for two-dimensional bubble dynamics. Int. J. Numer. Methods Fluids 69(3), 747–761 (2012). doi:10.1002/fld.2611

    Article  MathSciNet  Google Scholar 

  3. Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. In: Annual Review of Fluid Mechanics, vol. 30, pp. 139–165. Annual Reviews, Palo Alto, CA (1998). doi:10.1146/annurev.fluid.30.1.139

  4. Ausas, R.F., Buscaglia, G.C., Idelsohn, S.R.: A new enrichment space for the treatment of discontinuous pressures in multi-fluid flows. Int. J. Numer. Methods Fluids 70(7), 829–850 (2012). doi:10.1002/fld.2713

    Article  MathSciNet  Google Scholar 

  5. Bänsch, E.: Finite element discretization of the Navier–Stokes equations with a free capillary surface. Numer. Math. 88(2), 203–235 (2001). doi:10.1007/PL00005443

    Article  MATH  MathSciNet  Google Scholar 

  6. Bänsch, E.: Numerical Methods for the Instationary Navier–Stokes Equations with a Free Capillary Surface. University Freiburg, Habilitation (2001)

    Google Scholar 

  7. Barrett, J.W., Garcke, H., Nürnberg, R.: A parametric finite element method for fourth order geometric evolution equations. J. Comput. Phys. 222(1), 441–462 (2007). doi:10.1016/j.jcp.2006.07.026

    Article  MATH  MathSciNet  Google Scholar 

  8. Barrett, J.W., Garcke, H., Nürnberg, R.: On the parametric finite element approximation of evolving hypersurfaces in \({\mathbb{R}}^3\). J. Comput. Phys. 227(9), 4281–4307 (2008). doi: 10.1016/j.jcp.2007.11.023

    Article  MATH  MathSciNet  Google Scholar 

  9. Barrett, J.W., Garcke, H., Nürnberg, R.: On stable parametric finite element methods for the Stefan problem and the Mullins–Sekerka problem with applications to dendritic growth. J. Comput. Phys. 229(18), 6270–6299 (2010). doi:10.1016/j.jcp.2010.04.039

    Article  MATH  MathSciNet  Google Scholar 

  10. Barrett, J.W., Garcke, H., Nürnberg, R.: Eliminating spurious velocities with a stable approximation of viscous incompressible two-phase Stokes flow. Comput. Methods Appl. Mech. Eng. 267, 511–530 (2013). doi:10.1016/j.cma.2013.09.023

    Article  MATH  Google Scholar 

  11. Barrett, J.W., Garcke, H., Nürnberg, R.: Finite element approximation of one-sided Stefan problems with anisotropic, approximately crystalline, Gibbs–Thomson law. Adv. Differ. Equ. 18(3–4), 383–432 (2013). http://projecteuclid.org/euclid.ade/1360073021

  12. Boffi, D.: Three-dimensional finite element methods for the Stokes problem. SIAM J. Numer. Anal. 34(2), 664–670 (1997). doi:10.1137/S0036142994270193

    Article  MATH  MathSciNet  Google Scholar 

  13. Boffi, D., Cavallini, N., Gardini, F., Gastaldi, L.: Local mass conservation of Stokes finite elements. J. Sci. Comput. 52(2), 383–400 (2012). doi:10.1007/s10915-011-9549-4

    Article  MATH  MathSciNet  Google Scholar 

  14. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, vol. 15. Springer, New York (1991). doi:10.1007/978-1-4612-3172-1

    Book  Google Scholar 

  15. Cheng, K.W., Fries, T.P.: XFEM with hanging nodes for two-phase incompressible flow. Comput. Methods Appl. Mech. Eng. 245–246, 290–312 (2012). doi:10.1016/j.cma.2012.07.011

    Article  MathSciNet  Google Scholar 

  16. Cho, M.H., Choi, H.G., Choi, S.H., Yoo, J.Y.: A Q2Q1 finite element/level-set method for simulating two-phase flows with surface tension. Int. J. Numer. Methods Fluids 70, 468–492 (2012). doi:10.1002/fld.2696

    Article  MathSciNet  Google Scholar 

  17. Deckelnick, K., Dziuk, G., Elliott, C.M.: Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14, 139–232 (2005). doi:10.1017/S0962492904000224

    Article  MATH  MathSciNet  Google Scholar 

  18. Dziuk, G.: An algorithm for evolutionary surfaces. Numer. Math. 58(6), 603–611 (1991). doi:10.1007/BF01385643

    MATH  MathSciNet  Google Scholar 

  19. Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2005)

    Google Scholar 

  20. Feng, X.: Fully discrete finite element approximations of the Navier–Stokes–Cahn–Hilliard diffuse interface model for two-phase fluid flows. SIAM J. Numer. Anal. 44(3), 1049–1072 (2006). doi:10.1137/050638333

    Article  MATH  MathSciNet  Google Scholar 

  21. Ganesan, S.: Finite element methods on moving meshes for free surface and interface flows. Ph.D. thesis, University Magdeburg, Magdeburg, Germany (2006)

  22. Ganesan, S., Matthies, G., Tobiska, L.: On spurious velocities in incompressible flow problems with interfaces. Comput. Methods Appl. Mech. Eng. 196(7), 1193–1202 (2007). doi:10.1016/j.cma.2006.08.018

    Article  MATH  MathSciNet  Google Scholar 

  23. Gerbeau, J.F., Le Bris, C., Lelièvre, T.: Mathematical Methods for the Magnetohydrodynamics of Liquid Metals. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2006). doi:10.1093/acprof:oso/9780198566656.001.0001

    Book  Google Scholar 

  24. Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes. Springer, Berlin (1986)

    MATH  Google Scholar 

  25. Groß, S., Reusken, A.: An extended pressure finite element space for two-phase incompressible flows with surface tension. J. Comput. Phys. 224(1), 40–58 (2007). doi:10.1016/j.jcp.2006.12.021

    Article  MATH  MathSciNet  Google Scholar 

  26. Groß, S., Reusken, A.: Numerical Methods for Two-Phase Incompressible Flows, Springer Series in Computational Mathematics, vol. 40. Springer, Berlin (2011)

    Book  Google Scholar 

  27. Grün, G., Klingbeil, F.: Two-phase flow with mass density contrast: Stable schemes for a thermodynamic consistent and frame-indifferent diffuse-interface model. J. Comput. Phys. 257, 708–725 (2014). doi:10.1016/j.jcp.2013.10.028

    Article  MathSciNet  Google Scholar 

  28. Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981). doi:10.1016/0021-9991(81)90145-5

    Article  MATH  Google Scholar 

  29. Hohenberg, P.C., Halperin, B.I.: Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435–479 (1977). doi:10.1103/RevModPhys.49.435

    Article  Google Scholar 

  30. Hughes, T.J.R., Liu, W.K., Zimmermann, T.K.: Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 29(3), 329–349 (1981). doi:10.1016/0045-7825(81)90049-9

    Article  MATH  MathSciNet  Google Scholar 

  31. Hysing, S., Turek, S., Kuzmin, D., Parolini, N., Burman, E., Ganesan, S., Tobiska, L.: Quantitative benchmark computations of two-dimensional bubble dynamics. Int. J. Numer. Methods Fluids 60(11), 1259–1288 (2009). doi:10.1002/fld.1934

    Article  MATH  MathSciNet  Google Scholar 

  32. Jemison, M., Loch, E., Sussman, M., Shashkov, M., Arienti, M., Ohta, M., Wang, Y.: A coupled level set-moment of fluid method for incompressible two-phase flows. J. Sci. Comput. 54(2–3), 454–491 (2013). doi:10.1007/s10915-012-9614-7

    Article  MATH  MathSciNet  Google Scholar 

  33. Kay, D., Styles, V., Welford, R.: Finite element approximation of a Cahn–Hilliard–Navier–Stokes system. Interfaces Free Bound. 10(1), 15–43 (2008). doi:10.4171/IFB/178

    Article  MATH  MathSciNet  Google Scholar 

  34. LeVeque, R.J., Li, Z.: Immersed interface methods for Stokes flow with elastic boundaries or surface tension. SIAM J. Sci. Comput. 18(3), 709–735 (1997). doi:10.1137/S1064827595282532

    Article  MATH  MathSciNet  Google Scholar 

  35. Li, Y., Yun, A., Lee, D., Shin, J., Jeong, D., Kim, J.: Three-dimensional volume-conserving immersed boundary model for two-phase fluid flows. Comput. Methods Appl. Mech. Eng. 257, 36–46 (2013). doi:10.1016/j.cma.2013.01.009

    Article  MATH  MathSciNet  Google Scholar 

  36. Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn–Hilliard fluids and topological transitions. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454(1978), 2617–2654 (1998). doi:10.1098/rspa.1998.0273

    Article  MATH  MathSciNet  Google Scholar 

  37. Olshanskii, M.A., Reusken, A.: Analysis of a Stokes interface problem. Numer. Math. 103(1), 129–149 (2006). doi:10.1007/s00211-005-0646-x

    Article  MATH  MathSciNet  Google Scholar 

  38. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces, Applied Mathematical Sciences, vol. 153. Springer, New York (2003)

    Book  Google Scholar 

  39. Peskin, C.S.: The immersed boundary method. Acta Numer. 11, 479–517 (2002). doi:10.1017/S0962492902000077

    Article  MATH  MathSciNet  Google Scholar 

  40. Pilliod Jr, J.E., Puckett, E.G.: Second-order accurate volume-of-fluid algorithms for tracking material interfaces. J. Comput. Phys. 199(2), 465–502 (2004). doi:10.1016/j.jcp.2003.12.023

    Article  MATH  MathSciNet  Google Scholar 

  41. Popinet, S.: An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228(16), 5838–5866 (2009). doi:10.1016/j.jcp.2009.04.042

    Article  MATH  MathSciNet  Google Scholar 

  42. Renardy, Y., Renardy, M.: PROST: a parabolic reconstruction of surface tension for the volume-of-fluid method. J. Comput. Phys. 183(2), 400–421 (2002). doi:10.1006/jcph.2002.7190

    Article  MATH  MathSciNet  Google Scholar 

  43. Scardovelli, R., Zaleski, S.: Interface reconstruction with least-square fit and split Eulerian–Lagrangian advection. Int. J. Numer. Methods Fluids 41(3), 251–274 (2003). doi:10.1002/fld.431

    Article  MATH  Google Scholar 

  44. Schmidt, A., Siebert, K.G.: Design of Adaptive Finite Element Software: The Finite Element Toolbox ALBERTA, Lecture Notes in Computational Science and Engineering, vol. 42. Springer, Berlin (2005)

    Google Scholar 

  45. Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  46. Stroud, A.H.: Approximate Calculation of Multiple Integrals. Prentice-Hall, Englewood Cliffs (1971)

    MATH  Google Scholar 

  47. Sussman, M., Ohta, M.: A stable and efficient method for treating surface tension in incompressible two-phase flow. SIAM J. Sci. Comput. 31(4), 2447–2471 (2009). doi:10.1137/080732122

    Article  MATH  MathSciNet  Google Scholar 

  48. Sussman, M., Semereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114(1), 146–159 (1994). doi:10.1006/jcph.1994.1155

    Article  MATH  Google Scholar 

  49. Temam, R.: Navier–Stokes Equations. AMS Chelsea Publishing, Providence (2001)

    Google Scholar 

  50. Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S., Jan, Y.J.: A front-tracking method for the computations of multiphase flow. J. Comput. Phys. 169(2), 708–759 (2001). doi:10.1006/jcph.2001.6726

    Article  MATH  Google Scholar 

  51. Unverdi, S.O., Tryggvason, G.: A front-tracking method for viscous, incompressible multi-fluid flows. J. Comput. Phys. 100(1), 25–37 (1992). doi:10.1016/0021-9991(92)90307-K

    Article  MATH  Google Scholar 

  52. Zahedi, S., Kronbichler, M., Kreiss, G.: Spurious currents in finite element based level set methods for two-phase flow. Int. J. Numer. Methods Fluids 69(9), 1433–1456 (2012). doi:10.1002/fld.2643

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Nürnberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrett, J.W., Garcke, H. & Nürnberg, R. A Stable Parametric Finite Element Discretization of Two-Phase Navier–Stokes Flow. J Sci Comput 63, 78–117 (2015). https://doi.org/10.1007/s10915-014-9885-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9885-2

Keywords

Navigation