Skip to main content
Log in

Interior Penalty Continuous and Discontinuous Finite Element Approximations of Hyperbolic Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we present in a unified setting the continuous and discontinuous Galerkin methods for the numerical approximation of the scalar hyperbolic equation. Both methods are stabilized by the interior penalty method, more precisely by the jump of the gradient across element faces in the continuous case whereas in the discontinuous case the stabilization of the jump of the solution and optionally of its gradient is required to achieve optimal convergence. We prove that the solution in the case of the continuous Galerkin approach can be considered as a limit of the discontinuous one when the stabilization parameter associated with the penalization of the solution jump tends to infinity. As a consequence, the limit of the numerical flux of the discontinuous method yields a numerical flux for the continuous method as well. Numerical results will highlight the theoretical results that are proven in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baba, K., Tabata, M.: On a conservative upwind finite element scheme for convective diffusion equations. RAIRO. Anal. Numér. 15(1), 3–25 (1981)

    MATH  MathSciNet  Google Scholar 

  2. Babuška, I., Zlámal, M.: Nonconforming elements in the finite element method with penalty. SIAM J. Numer. Anal. 10, 863–875 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brezzi, F., Cockburn, B., Marini, L.D., Süli, E.: Stabilization mechanisms in discontinuous Galerkin finite element methods. Comput. Methods Appl. Mech. Eng. 195(25–28), 3293–3310 (2006)

    Article  MATH  Google Scholar 

  4. Brezzi, F., Houston, P., Marini, L.D., Süli, E.: Modeling subgrid viscosity for advection–diffusion problems. Comput. Methods Appl. Mech. Eng. 190, 1601–1610 (2000)

    Article  MATH  Google Scholar 

  5. Brezzi, F., Marini, L.D., Süli, E.: Discontinuous Galerkin methods for first-order hyperbolic problems. Math. Models Methods Appl. Sci. 14(12), 1893–1903 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32(1–3), 199–259 (1982). FENOMECH’81, Part I (Stuttgart, 1981)

    Article  MATH  MathSciNet  Google Scholar 

  7. Burman, E.: A unified analysis for conforming and nonconforming stabilized finite element methods using interior penalty. SIAM J. Numer. Anal. 43(5), 2012–2033 (2005). (Electronic)

    Article  MATH  MathSciNet  Google Scholar 

  8. Burman, E., Ern, A.: Stabilized Galerkin approximation of convection-diffusion-reaction equations: discrete maximum principle and convergence. Math. Comput. 74(252), 1637–1652 (2005). (Electronic)

    Article  MATH  MathSciNet  Google Scholar 

  9. Burman, E., Ern, A.: Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations. Math. Comput. 76(259), 1119–1140 (2007). (Electronic)

    Article  MATH  MathSciNet  Google Scholar 

  10. Burman, E., Hansbo, P.: Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems. Comput. Methods Appl. Mech. Eng. 193(15–16), 1437–1453 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Burman, E., Stamm, B.: Minimal stabilization for discontinuous Galerkin finite element methods for hyperbolic problems. J. Sci. Comput. 33(2), 183–208 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Burman, E., Zunino, P.: A domain decomposition method based on weighted interior penalties for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 44(4), 1612–1638 (2006). (Electronic)

    Article  MATH  MathSciNet  Google Scholar 

  13. Douglas, J. Jr., Dupont, T.: Interior penalty procedures for elliptic and parabolic Galerkin methods. In: Computing Methods in Applied Sciences (Second Internat. Sympos., Versailles, 1975). Lecture Notes in Phys., vol. 58, pp. 207–216. Springer, Berlin (1976)

    Google Scholar 

  14. Ern, A., Guermond, J.-L.: Discontinuous Galerkin methods for Friedrichs’ systems. I. General theory. SIAM J. Numer. Anal. 44(2), 753–778 (2006). (Electronic)

    Article  MATH  MathSciNet  Google Scholar 

  15. Guermond, J.-L.: Stabilization of Galerkin approximations of transport equations by subgrid modeling. (M2AN) Model. Math. Anal. Numer. 33(6), 1293–1316 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hoppe, R.H.W., Wohlmuth, B.: Element-oriented and edge-oriented local error estimators for nonconforming finite element methods. Modél. Math. Anal. Numér. 30(2), 237–263 (1996)

    MATH  MathSciNet  Google Scholar 

  17. Houston, P., Schwab, C., Süli, E.: Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39(6), 2133–2163 (2002). (Electronic)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hughes, T.J.R., Engel, G., Mazzei, L., Larson, M.G.: The continuous Galerkin method is locally conservative. J. Comput. Phys. 163(2), 467–488 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Johnson, C., Nävert, U.: An analysis of some finite element methods for advection-diffusion problems. In: Analytical and Numerical Approaches to Asymptotic Problems in Analysis (Proc. Conf., Univ. Nijmegen, Nijmegen, 1980). North-Holland Math. Stud., vol. 47, pp. 99–116. North-Holland, Amsterdam (1981)

    Chapter  Google Scholar 

  20. Johnson, C., Pitkäranta, J.: An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comput. 46(173), 1–26 (1986)

    Article  MATH  Google Scholar 

  21. Karakashian, O.A., Pascal, F.: A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal. 41(6), 2374–2399 (2003). (Electronic)

    Article  MATH  MathSciNet  Google Scholar 

  22. Larson, M.G., Niklasson, A.J.: Conservation properties for the continuous and discontinuous Galerkin method. Technical Report 2000-08, Chalmers Finite Element Center, Chalmers University (2000)

  23. Lesaint, P., Raviart, P.-A.: On a finite element method for solving the neutron transport equation. In: Mathematical Aspects of Finite Elements in Partial Differential Equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974). Math. Res. Center, Univ. of Wisconsin-Madison, vol. 33, pp. 89–123. Academic Press, New York (1974)

    Google Scholar 

  24. Mitchell, A.R., Griffiths, D.F.: Upwinding by Petrov-Galerkin methods in convection-diffusion problems. J. Comput. Appl. Math. 6(3), 219–228 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  25. Prud’homme, C.: A domain specific embedded language in C++ for automatic differentiation, projection, integration and variational formulations. Sci. Program. 14(2), 81–110 (2006)

    Google Scholar 

  26. Prud’homme, C.: Life: Overview of a unified C++ implementation of the finite and spectral element methods in 1D, 2D and 3D. In: Workshop On State-Of-The-Art In Scientific And Parallel Computing. Lecture Notes in Computer Science, vol. 4699, pp. 712–721. Springer, Berlin (2007)

    Chapter  Google Scholar 

  27. Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential Equations. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (1999)

    MATH  Google Scholar 

  28. Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory (1973)

  29. Romkes, A., Prudhomme, S., Oden, J.T.: A priori error analyses of a stabilized discontinuous Galerkin method. Comput. Math. Appl. 46(8–9), 1289–1311 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  30. Roos, H.-G., Stynes, M., Tobiska, L.: Numerical Methods for Singularly Perturbed Differential Equations. Springer Series in Computational Mathematics, vol. 24. Springer, Berlin (1996). Convection-diffusion and flow problems

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Stamm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burman, E., Quarteroni, A. & Stamm, B. Interior Penalty Continuous and Discontinuous Finite Element Approximations of Hyperbolic Equations. J Sci Comput 43, 293–312 (2010). https://doi.org/10.1007/s10915-008-9232-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-008-9232-6

Keywords

Navigation