Skip to main content
Log in

Functional Anatomy of the Forelimb Muscles of the Ocelot (Leopardus pardalis)

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

The myology of most members of the cat family (Felidae) is poorly documented. This study describes the forelimb myology of the ocelot (Leopardus pardalis) and compares the forelimb anatomy of the ocelot to that of other well-documented felids (Felis catus, Panthera leo). A substantial number of myological features vary among the three species and are distributed in a manner consistent with major ecomorphological variables (prey size preference and locomotor repertoire). The origin of m. triceps brachii caput longum is most extensive in Panthera leo, consistent with the fact that this species pursues prey over greater distances compared to F. catus or L. pardalis. In addition, the origins and insertions of the pronator and supinator musculature are reduced in Felis catus, which has little need to supinate during locomotion or prey capture. Furthermore, muscles serving the digits are best developed in the lion and ocelot, both of which make greater use of the forelimb for grasping and manipulation than does the domestic cat. However, while the lion probably retains the primitive morphology for the family, the ocelot shows evidence of secondary adaptation to increased mobility of the digits. Overall, results indicate that additional studies of felid forelimb myology are warranted, as they are likely to provide valuable functional insights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Allen H (1882) The muscles of the limbs of the raccoon (Procyon lotor). Proc Acad Nat Sci Philadelphia 34:115–144

    Google Scholar 

  • Andersson K (2004) Elbow-joint morphology as a guide to forearm function and foraging behaviour in mammalian carnivores. Zool J Linn Soc 142:91–104

    Article  Google Scholar 

  • Andersson K (2005) Were there pack-hunting canids in the Tertiary, and how can we know? Paleobiology 31:56–72

    Article  Google Scholar 

  • Andersson K, Werdelin L (2003) The evolution of cursorial carnivores in the Tertiary: implications of elbow-joint morphology. Proc R Soc Lond B Biol Sci 270:S163-S165

    Article  Google Scholar 

  • Antón M, Galobart A, Turner A (2005) Co-existence of scimitar-toothed cats, lions and hominins in the European Pleistocene. implications of the post-cranial anatomy of Homotherium latidens (Owen) for comparative palaeoecology. Quaternary Sci Rev 24:1287–1301

    Article  Google Scholar 

  • Argot C (2010) Morphofunctional analysis of the postcranium of Amphicyon major (Mammalia, Carnivora, Amphicyonidae) from the Miocene of Sansan (Gers, France) compared to three extant carnivores: Ursus arctos, Panthera leo, and Canis lupus. Geodiversitas 32:65–106

    Article  Google Scholar 

  • Barnett R, Barnes I, Philips MJ, Martin LD, Harington CR, Leonard JA, Cooper A (2005) Evolution of the extinct sabretooths and the American cheetah-like cat. Curr Biol 15:R589-R590

    Article  PubMed  CAS  Google Scholar 

  • Barone R (1967) La myologie du lion (Panthera leo). Mammalia 31:459–514

    Article  Google Scholar 

  • Beswick-Perrin J (1871) On the myology of the limbs of the Kinkajou (Cercoleptes caudivolvulus). Proc Zool Soc Lond 1871:547–559

    Google Scholar 

  • Bradley OC (1933) M. retractor bulbi (oculi) in Carnivora and Ungulata. J Anat 68:65–74

    PubMed  CAS  Google Scholar 

  • Christiansen P, Adolfssen JS (2007) Osteology and ecology of Megantereon cultridens SE311 (Mammalia; Felidae; Machairodontinae), a sabrecat from the late Pliocene – early Pleistocene of Senéze, France. Zool J Linn Soc 151:833–884

    Article  Google Scholar 

  • Cihák R (1972) Ontogenesis of the skeleton and intrinsic muscles of the human hand and foot. Ergebn Anat Entwicklungsges 46:1–194

    Google Scholar 

  • Concha I, Adaro L, Borroni C, Altamirano C (2004) Consideraciones anatómicas sobre la musculatura intrínseca del miembro torácio del puma (Puma concolor). Internatl J Morphol 22:121–125

    Google Scholar 

  • Cuvier G (1850) Anatomie comparée. Recueil de planches de myologie dessinées par Georges Cuvier ou exécutées sous ses yeux par M. Laurillard. Imprimerie d’E. Duverger, Paris

  • Dastugue J (1963) Anatomie des muscles pronateurs et supinateurs de quelques mammifères. Mammalia 27:256–284

    Article  Google Scholar 

  • Davis DD (1949) The shoulder architecture of bears and other carnivores. Fieldiana Zool 31:285–305

    Google Scholar 

  • Davis DD (1964) The giant panda: a morphological study of evolutionary mechanisms. Fieldiana Zool Mem 3:1–339

    Google Scholar 

  • Denis A (1964) Cats of the World. Houghton Mifflin, Boston

    Google Scholar 

  • Emmons LH (1987) Comparative feeding ecology of felids in a Neotropical rainforest. Behav Ecol Sociobiol 20:271–283

    Article  Google Scholar 

  • Enders RK (1935) Mammalian life histories from Barro Colorado Island, Panama. Bull Mus Comp Zool 78:430–436

    Google Scholar 

  • Evans HE (1993) Miller’s Anatomy of the Dog. Saunders, an imprint of Elsevier, Philadelphia

  • Ewer RF (1973) The Carnivores. Cornell University Press, New York

    Google Scholar 

  • Feeney S (1999) Comparative osteology, myology, and locomotor specializations of the fore and hind limbs of the North American foxes Vulpes vulpes and Urocyon cinereoargenteus. Ph.D. Thesis, University of Massachusetts, Amherst, Amherst, Massachusetts, pp 1–267

  • Fisher RE, Adrian B, Barton M, Holmgren J, Tang SY (2009) The phylogeny of the red panda (Ailurus fulgens): evidence from the forelimb. J Anat 215:611–635

    Article  PubMed  Google Scholar 

  • Gambaryan PP (1974) How Mammals Run. John Wiley and Sons, New York

    Google Scholar 

  • Gilbert SG (2002) Pictorial Anatomy of the Cat. University of Toronto Press, Toronto

    Google Scholar 

  • Gonyea WJ, Ericson GC (1977) Morphological and histochemical organization of the flexor carpi radialis muscle in the cat. Am J Anat 148:329–344

    Article  PubMed  CAS  Google Scholar 

  • Gough-Palmer AL (2008) Paws for thought: comparative radiological anatomy of the mammalian forelimb. Radiographics 28:501–510

    Article  PubMed  Google Scholar 

  • Haines RW (1950) The flexor muscles of the forearm and hand in lizards and mammals. J Anat 84:13–29

    PubMed  CAS  Google Scholar 

  • Hall ER (1926) The muscular anatomy of three mustelid mammals, Mephitis, Spilogale, and Martes. Univ Calif Publ Zool 30:7–38

    Google Scholar 

  • Haughton S (1867a) On the muscular anatomy of the lion. Proc R Irish Acad Sci Ser 2 ix:85–93

    Google Scholar 

  • Haughton S (1867b) On the muscular anatomy of the otter (Lutra vulgaris). Proc R Irish Acad Sci Ser 2 ix:511–515

    Google Scholar 

  • Heinrich RE, Houde P (2006) The postcranial anatomy of Viverravus (Mammalia, Carnivora) and its implications for substrate use in basal Carnivora. J Vertebr Paleontol 26:422–435

    Article  Google Scholar 

  • Heinrich RE, Rose KD (1997) Postcranial morphology and locomotor behaviour of two early Eocene miacoid carnivorans, Vulpavus and Didymictis. Palaeontology 40:279–305

    Google Scholar 

  • Hemmer H (1978) The evolutionary systematics of living Felidae: present status and current problems. Carnivore 1:71–78

    Google Scholar 

  • Herrington SJ (1986) Phylogenetic relationships of the wild cats of the world. Ph.D. dissertation, University of Kansas, Lawrence

  • Hubbard C, Naples VL, Ross E, Carlon B (2009) Comparative analysis of paw pad structure in the clouded leopard (Neofelis nebulosa) and domestic cat (Felis catus). Anat Rec 292:1213–1228

    Article  Google Scholar 

  • Iwaniuk AN, Pellis SM, Whishaw IQ (1999) The relationship between forelimb morphology and behaviour in North American carnivores (Carnivora). Can J Zool 77:1064–1074

    Article  Google Scholar 

  • Johnson WE, Eizirik E, Pecon-Slattery J, Murphy WJ, Antunes A, Teeling EC, O’Brien SJ (2006) The late Miocene radiation of modern Felidae: a genetic assessment. Science 311:73–77

    Article  PubMed  CAS  Google Scholar 

  • Johnson WE, O’Brien SJ (1997) Phylogenetic reconstruction of the Felidae using 16S rRNA and NADH-5 mitochondrial genes. J Mol Evol 44:S98–S116

    Article  PubMed  CAS  Google Scholar 

  • Leach D (1977) The forelimb musculature of marten (Martes americana Turton) and fisher (Martes pennanti Erxleben). Can J Zool 55:31–41

    Article  PubMed  CAS  Google Scholar 

  • Lewis ME (1997) Carnivoran paleoguilds of Africa: implications for hominid food procurement strategies. J Hum Evol 32:257–288

    Article  PubMed  CAS  Google Scholar 

  • Lewis ME, Lague MR (2010) Interpreting sabretooth cat (Carnivora; Felidae; Machairodontinae) postcranial morphology in light of scaling patterns in felids. In: Goswami A, Friscia AR (eds) Carnivoran Evolution: New Views on Phylogeny, Form, and Function. Cambridge University Press, New York, pp 411–465

    Google Scholar 

  • Leyhausen P (1990) Cats. In: Parker SP (ed) Grzimek’s Encyclopedia of Mammals. McGraw-Hill Publishing Company, New York, pp 576–632

    Google Scholar 

  • MacFadden BJ, Galiano H (1981) Late Hemphillian cat (Mammalia, Felidae) from the Bone Valley Formation of central Florida. J Paleontol 55:218–226

    Google Scholar 

  • Mackintosh HW (1875–1877) Notes on the myology of the coati-mondi (Nasua narica and N. fusca) and common marten (Martes foina). Proc R Irish Acad Sci Ser 2 2:48–55

    Google Scholar 

  • Mattern MY, McLennan DA (2000) Phylogeny and speciation of felids. Cladistics 16:232–253

    Article  Google Scholar 

  • McClearn D (1985) Anatomy of raccoon (Procyon lotor) and coati (Nasua narica and N. nasua) forearm and leg muscles: relations between fiber length, moment-arm length, and joint-angle excursion. J Morphol 183:87–115

    Article  PubMed  CAS  Google Scholar 

  • Meachen-Samuels JA, Van Valkenburgh B (2009) Forelimb indicators of prey-size preference in the Felidae. J Morphol 270:729–744

    Article  PubMed  Google Scholar 

  • Meckel JF (1829–1830) Traité général d’anatomie comparée, Volume 6. Rouen Frères, Paris

  • Mivart SG (1900) The Cat: An Introduction to the Study of Backboned Animals, Especially Mammals. Charles Scribner’s Sons, New York

    Google Scholar 

  • Murray JL, Gardner GL (1997) Leopardus pardalis. Mammal Species 548:1–10

    Article  Google Scholar 

  • Nickel R, Schummer A, Seiferle E, Wilkens H, Frewein J (1986) The Anatomy of Domestic Animals. Springer-Verlag, New York

    Google Scholar 

  • Oliveira TGd (1998) Leopardus wiedii. Mammal Species 579:1–6

    Google Scholar 

  • Pecon-Slattery J, O’Brien SJ (1998) Patterns of X and Y chromosome DNA sequence divergence during the Felidae radiation. Genetics 148:1245–1255

    PubMed  CAS  Google Scholar 

  • Pecon-Slattery J, Pearks Wilkerson AJ, Murphy WJ, O’Brien SJ (2004) Phylogenetic assessment of introns and SINEs within the Y chromosome using the cat family Felidae as a species tree. Mol Biol Evol 21:2299–2309

    Article  PubMed  CAS  Google Scholar 

  • Piérard J (1965) Anatomie comparée du larynx du chien et d’autres carnivores. Can Vet J 6:11–15

    PubMed  Google Scholar 

  • Pocock RI (1917) The classification of existing Felidae. Ann Mag Nat Hist ser 8 20:329–350

    Google Scholar 

  • Prevosti FJ (2006) New material of Pleistocene cats (Carnivora, Felidae) from southern South America, with comments on biogeography and the fossil record. Geobios 39:679–694

    Article  Google Scholar 

  • Reighard JE, Jennings HS (1901) Anatomy of the Cat, 2nd edition. H. Holt, New York

    Google Scholar 

  • Ross FO (1876) Myology of the cheetah, or hunting leopard of India (Felis jubata). Proc R Irish Acad Sci Ser 2 3:23–32

    Google Scholar 

  • Rothwell T (2001) A partial skeleton of Pseudaelurus (Carnivora: Felidae) from the Nambé Member of the Tesuque Formation, Española Basin, New Mexico. Am Mus Novitates 3342:1–31

    Article  Google Scholar 

  • Salesa MJ, Antón M, Turner A, Morales J (2010) Functional anatomy of the forelimb in Promegantereon ogygia (Felidae, Machairodontinae, Smilodontini) from the late Miocene of Spain and the origins of the sabre-toothed felid model. J Anat 216:381–396

    Article  PubMed  Google Scholar 

  • Salles LO (1992) Felid phylogenetics: extant taxa and skull morphology (Felidae, Aeluroidea). Am Mus Novitates 3047:1–67

    Google Scholar 

  • Scharlau B (1925) Die Muskeln der oberen Extremität einer 18 jährigen Löwin. Z Anat Entwicklungsges 77:187–211

    Article  Google Scholar 

  • Schutz H, Guralnick RP (2007) Postcranial element shape and function: assessing locomotor mode in extant and extinct mustelid carnivorans. Zool J Linn Soc 150:895–914

    Article  Google Scholar 

  • Seymour KL (1999) Taxonomy, morphology, paleontology and phylogeny of the South American small cats (Mammalia: Felidae). Ph.D. dissertation, University of Toronto, Toronto

  • Spoor CF, Badoux DM (1986) Descriptive and functional myology of the neck and forelimb of the striped hyaena (Hyaena hyaena, L. 1758). Anat Anz 161:375–387

    PubMed  CAS  Google Scholar 

  • Spoor CF, Badoux DM (1989) Descriptive and functional morphology of the locomotory apparatus of the spotted hyaena (Crocuta crocuta, Erxleben, 1777). Anat Anz 168:261–266

    PubMed  CAS  Google Scholar 

  • Straus-Durckheim H (1845) Anatomie descriptive et comparative du chat: type des mammifères en général, Volume 1. self published, Paris

  • Sunquist ME, Sunquist FC (2009) Family Felidae (cats). In: Wilson DE, Mittermeier RA (eds) Handbook of the Mammals of the World. 1. Carnivores. Lynx Edicions, Barcelona, pp 54–168

  • Tan U, Yaprak M, Kutlu N (1990) Paw preference in cats: distribution and sex differences. Internatl J Neurosci 50:195–208

    Article  CAS  Google Scholar 

  • Taylor ME (1974) The functional anatomy of the forelimb of some African Viverridae (Carnivora). J Morphol 143:307–336

    Article  PubMed  CAS  Google Scholar 

  • Testut L (1884) Les anomalies musculaires chez l’homme: expliquées par l’anatomie comparée. Libraire de L’académie de Médicine, Paris

    Google Scholar 

  • Waibl H, Gasse H, Hashimoto Y, Burdas K-D, Constantinescu GM, Saber AS, Simoens P, Salazar I, Sotonyi P, Augsburger H, Bragulla H (2005) Nomina anatomica veterinaria. 5th edition. International Committee on Veterinary Gross Anatomical Nomenclature. World Association of Veterinary Anatomists. http://www.wava-amav.org/Downloads/nav_2005.pdf. Accessed 17 January 2012

  • Watson M (1882) On the muscular anatomy of Proteles as compared with that of Hyaena and Viverra. Proc Zool Soc Lond 1882:579–586

    Google Scholar 

  • Weigel I (1956) Das Fellmuster der wildlebenden Katzenarten und der Hauskatze in vergleichender und stammesgeschichtlicher Hinsicht. Säugetierk Mitt 9:1–120

    Google Scholar 

  • Werdelin L, Lewis ME (2001) A revision of the genus Dinofelis (Mammalia, Felidae). Zool J Linn Soc 132:147–258

    Article  Google Scholar 

  • Werdelin L, Yamaguchi N, Johnson WE, O’Brien SJ (2010) Phylogeny and evolution of cats. In: MacDonald DW, Loveridge AJ (eds) Biology and Conservation of Wild Felids. Oxford University Press, Oxford, pp 59–88

    Google Scholar 

  • Windle BCA (1889) The flexors of the digits of the hand. I. The muscular masses in the fore-arm. J Anat Physiol 24:72–84

    PubMed  CAS  Google Scholar 

  • Windle BCA, Parsons FG (1897) On the myology of the terrestrial Carnivora. Part I: muscles of the head, neck, and fore-limb. Proc Zool Soc Lond 1897:370–409

    Google Scholar 

  • Windle BCA, Parsons FG (1898) The myology of the terrestrial Carnivora. Part II. Proc Zool Soc Lond 1898:152–186

    Google Scholar 

  • Young AH, Robinson A (1889) On the anatomy of Hyaena striata. Part II. J Anat Physiol 23:187–200

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Curtis Marean at Arizona State University and the Phoenix Zoo for granting permission to work on the ocelot specimen. In addition, the authors thank Jeff Bradley from the Burke Museum at the University of Washington for the loan of UWBM 35453, Laura Abraczinskas from the Michigan State University Museum for the loan of MSU 4251, and Mark Hafner from the Louisiana State University Museum of Natural Science for the loans of LSUMZ 12459 and 24325. Special thanks to Sachin Nair for aiding in the dissection of mm. scalenius, splenius capitis, sternocephalicus, and rectus thoracis of the female ocelot and to Terry Ritzman for his assistance with the forelimb dissections of the female ocelot and both lions. This research was supported in part by funds from the Howard Hughes Medical Institute through the Undergraduate Science Education Program and from the ASU School of Life Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca E. Fisher.

Additional information

Emily Julik and Shawn Zack contributed equally to this work.

Appendices

Appendix I

Table 3 Forelimb muscle weights for Leopardus pardalis. Only muscle bellies were weighed. The “>” sign is used for damaged muscles whose original weight exceeds the reported weight. Where only one side is presented, the contralateral side was too badly damaged to weigh. All measurements are in grams.

Appendix II

Table 4 Forelimb muscle weights for Panthera leo. Only muscle bellies were weighed. As the origins of most of the extrinsic muscles were damaged at necropsy, weights are not provided. Where only one side is presented, the contralateral side was too badly damaged to weigh. All measurements are in grams

Appendix III

Table 5 Comparison of muscle names used in this study with those used in descriptions of Felis catus (Reighard and Jennings 1901), Hyaena hyaena (Spoor and Badoux 1986), and Ailuropoda melanoleuca (Davis 1964). Note that terminology used by Taylor (1974) is taken directly from Reighard and Jennings (1901). Names placed in parentheses indicate heads or parts of larger muscles. Absence of a muscle in a particular column indicates that the muscle is absent or not described as distinct in that taxon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Julik, E., Zack, S., Adrian, B. et al. Functional Anatomy of the Forelimb Muscles of the Ocelot (Leopardus pardalis). J Mammal Evol 19, 277–304 (2012). https://doi.org/10.1007/s10914-012-9191-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-012-9191-4

Keywords

Navigation