Skip to main content

Advertisement

Log in

Gap Junctions and Wnt Signaling in the Mammary Gland: a Cross-Talk?

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Connexins (Cxs), the building blocks of gap junctions (GJs), exhibit spatiotemporal patterns of expression and regulate the development and differentiation of the mammary gland, acting via channel-dependent and channel-independent mechanisms. Impaired Cx expression and localization are reported in breast cancer, suggesting a tumor suppressive role for Cxs. The signaling events that mediate the role of GJs in the development and tumorigenesis of the mammary gland remain poorly identified. The Wnt pathways, encompassing the canonical or the Wnt/β-catenin pathway and the noncanonical β-catenin-independent pathway, also play important roles in those processes. Indeed, aberrant Wnt signaling is associated with breast cancer. Despite the coincident roles of Cxs and Wnt pathways, the cross-talk in the breast tissue is poorly defined, although this is reported in a number of other tissues. Our previous studies revealed a channel-independent role for Cx43 in inducing differentiation or suppressing tumorigenesis of mammary epithelial cells by acting as a negative regulator of the Wnt/β-catenin pathway. Here, we provide a brief overview of mammary gland development, with emphasis on the role of Cxs in development and tumorigenesis of this tissue. We also discuss the role of Wnt signaling in similar contexts, and review the literature illustrating interplay between Cxs and Wnt pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

GJ:

Gap junction

Cx:

Connexin

GJIC:

Gap junctional intercellular communication

TEB:

Terminal end bud

TDLU:

Terminal duct lobular unit

ECM:

Extracellular matrix

3-D:

3-Dimensional

3'-UTR:

3'-Untranslated region

STAT5:

Signal transducer and activator of transcription 5

VEGF:

Vascular endothelial growth factor

TSP-1:

Thrombospondin 1

PCP:

Planar cell polarity

APC:

Adenomatous polyposis coli

CK1:

Casein kinase 1

GSK-3:

Glycogen synthase kinase 3

TCF:

T-cell factor

LEF:

Lymphoid enhancer factor

Gro:

Groucho

TLE:

Transducin-like enhancer

HDAC:

Histone deacetylase

Fzd:

Frizzled

LRP5/6:

Low-density lipoprotein receptor-related protein 5 or 6

Dvl:

Dishevelled

CDK1:

Cyclin-dependent kinase 1

DKK1:

Dikkopf 1

sFRP:

Secreted frizzled-related protein

WIF1:

Wnt inhibitory factor 1

Panx3:

Pannexin 3

Rb:

Retinoblastoma

GSC:

Glioma stem cell

GFAP:

Glial fibrillary acidic protein

MSC:

Mesenchymal stem cell

Rho:

Ras homolog

JNK:

c-Jun N-terminal kinase

Daam1:

Dishevelled-associated activator of morphogenesis 1

GEF:

Guanine nucleotide exchange factor

ROCK:

Rho-associated kinase

ER:

Endoplasmic reticulum

PKC:

Protein kinase C

CaMKII:

Calcium/calmodulin-dependent protein kinase II

NFAT:

Nuclear factor of activated T-cells

PAK1:

p21-activated kinase 1

FRET:

Forster resonance energy transfer

EGF:

Epidermal growth factor

MMP:

Matrix metalloproteinase

MLC:

Myosin light chain

TJ:

Tight junction

AJ:

Adherens junction

MDCK:

Madin-Darby canine kidney

MTOC:

Microtubule-organizing center

GDI:

Guanine nucleotide dissociation inhibitor

α-MHC:

α-Myosin heavy chain

BCR:

B-cell receptor

References

  1. Chua AC, Hodson LJ, Moldenhauer LM, Robertson SA, Ingman WV. Dual roles for macrophages in ovarian cycle-associated development and remodelling of the mammary gland epithelium. Development. 2010;137(24):4229–38.

    Article  CAS  PubMed  Google Scholar 

  2. Gouon-Evans V, Rothenberg ME, Pollard JW. Postnatal mammary gland development requires macrophages and eosinophils. Development. 2000;127(11):2269–82.

    CAS  PubMed  Google Scholar 

  3. Keely PJ, Wu JE, Santoro SA. The spatial and temporal expression of the α2β1 integrin and its ligands, collagen I, collagen IV, and laminin, suggest important roles in mouse mammary morphogenesis. Differentiation. 1995;59(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  4. Koledova Z, Lu P. A 3D Fibroblast-Epithelium Co-culture Model for Understanding Microenvironmental Role in Branching Morphogenesis of the Mammary Gland. Mammary Gland Development. Berlin: Springer; 2017. p. 217–31.

    Google Scholar 

  5. O'Brien J, Martinson H, Durand-Rougely C, Schedin P. Macrophages are crucial for epithelial cell death and adipocyte repopulation during mammary gland involution. Development. 2012;139(2):269–75.

    Article  CAS  PubMed  Google Scholar 

  6. Taddei I, Deugnier M-A, Faraldo MM, Petit V, Bouvard D, Medina D, et al. β1 integrin deletion from the basal compartment of the mammary epithelium affects stem cells. Nat Cell Biol. 2008;10(6):716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Woodward T, Mienaltowski A, Modi R, Bennett J, Haslam S. Fibronectin and the α5β1 integrin are under developmental and ovarian steroid regulation in the normal mouse mammary gland. Endocrinology. 2001;142(7):3214–22.

    Article  CAS  PubMed  Google Scholar 

  8. Insua-Rodríguez J, Oskarsson T. The extracellular matrix in breast cancer. Adv Drug Deliv Rev. 2016;97:41–55.

    Article  CAS  PubMed  Google Scholar 

  9. Majidinia M, Yousefi B. Breast tumor stroma: a driving force in the development of resistance to therapies. Chem Biol Drug Des. 2017;89(3):309–18.

    Article  CAS  PubMed  Google Scholar 

  10. Soysal SD, Tzankov A, Muenst SE. Role of the tumor microenvironment in breast cancer. Pathobiology. 2015;82(3–4):142–52.

    Article  CAS  PubMed  Google Scholar 

  11. Knudsen KA, Wheelock MJ. Cadherins and the mammary gland. J Cell Biochem. 2005;95(3):488–96.

    Article  CAS  PubMed  Google Scholar 

  12. McLachlan E, Shao Q, Laird DW. Connexins and gap junctions in mammary gland development and breast cancer progression. J Membr Biol. 2007;218(1–3):107–21.

    Article  CAS  PubMed  Google Scholar 

  13. Hirschi KK, Xu C, Tsukamoto T, Sager R. Gap junction genes Cx26 and Cx43 individually suppress the cancer phenotype of human mammary carcinoma cells and restore differentiation potential. Cell Growth Differ. 1996;7(7):861–70.

    CAS  PubMed  Google Scholar 

  14. Laird DW, Fistouris P, Batist G, Alpert L, Huynh HT, Carystinos GD, et al. Deficiency of connexin43 gap junctions is an independent marker for breast tumors. Cancer Res. 1999;59(16):4104–10.

    CAS  PubMed  Google Scholar 

  15. Singal R, Tu Z, Vanwert J, Ginder G, Kiang D. Modulation of the connexin26 tumor suppressor gene expression through methylation in human mammary epithelial cell lines. Anticancer Res. 2000;20(1A):59–64.

    CAS  PubMed  Google Scholar 

  16. Qin H, Shao Q, Curtis H, Galipeau J, Belliveau DJ, Wang T, et al. Retroviral delivery of connexin genes to human breast tumor cells inhibits in vivo tumor growth by a mechanism that is independent of significant gap junctional intercellular communication. J Biol Chem. 2002;277(32):29132–8.

    Article  CAS  PubMed  Google Scholar 

  17. Kańczuga-Koda L, Sulkowska M, Koda M, Reszeć J, Famulski W, Baltaziak M, et al. Expression of connexin 43 in breast cancer in comparison with mammary dysplasia and the normal mammary gland. Folia Morphol (Warsz). 2003;62(4):439–42.

    Google Scholar 

  18. Momiyama M, Omori Y, Ishizaki Y, Nishikawa Y, Tokairin T, Ogawa J, et al. Connexin26-mediated gap junctional communication reverses the malignant phenotype of MCF-7 breast cancer cells. Cancer Sci. 2003;94(6):501–7.

    Article  CAS  PubMed  Google Scholar 

  19. Shao Q, Wang H, McLachlan E, Veitch GI, Laird DW. Down-regulation of Cx43 by retroviral delivery of small interfering RNA promotes an aggressive breast cancer cell phenotype. Cancer Res. 2005;65(7):2705–11.

    Article  CAS  PubMed  Google Scholar 

  20. Kalra J, Shao Q, Qin H, Thomas T, Alaoui-Jamali MA, Laird DW. Cx26 inhibits breast MDA-MB-435 cell tumorigenic properties by a gap junctional intercellular communication-independent mechanism. Carcinogenesis. 2006;27(12):2528–37.

    Article  CAS  PubMed  Google Scholar 

  21. Plante I, Laird DW. Decreased levels of connexin43 result in impaired development of the mammary gland in a mouse model of oculodentodigital dysplasia. Dev Biol. 2008;318(2):312–22.

    Article  CAS  PubMed  Google Scholar 

  22. Plante I, Wallis A, Shao Q, Laird DW. Milk secretion and ejection are impaired in the mammary gland of mice harboring a Cx43 mutant while expression and localization of tight and adherens junction proteins remain unchanged. Biol Reprod. 2010;82(5):837–47.

    Article  CAS  PubMed  Google Scholar 

  23. Plante I, Stewart M, Barr K, Allan A, Laird D. Cx43 suppresses mammary tumor metastasis to the lung in a Cx43 mutant mouse model of human disease. Oncogene. 2011;30(14):1681.

    Article  CAS  PubMed  Google Scholar 

  24. Talhouk RS, Fares M-B, Rahme GJ, Hariri HH, Rayess T, Dbouk HA, et al. Context dependent reversion of tumor phenotype by connexin-43 expression in MDA-MB231 cells and MCF-7 cells: role of β-catenin/connexin43 association. Exp Cell Res. 2013;319(20):3065–80.

    Article  CAS  PubMed  Google Scholar 

  25. Stewart MK, Plante I, Bechberger JF, Naus CC, Laird DW. Mammary gland specific knockdown of the physiological surge in Cx26 during lactation retains normal mammary gland development and function. PLoS One. 2014;9(7):e101546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stewart MK, Bechberger JF, Welch I, Naus CC, Laird DW. Cx26 knockout predisposes the mammary gland to primary mammary tumors in a DMBA-induced mouse model of breast cancer. Oncotarget. 2015;6(35):37185.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mroue R, Inman J, Mott J, Budunova I, Bissell MJ. Asymmetric expression of connexins between luminal epithelial-and myoepithelial-cells is essential for contractile function of the mammary gland. Dev Biol. 2015;399(1):15–26.

    Article  CAS  PubMed  Google Scholar 

  28. Ferrati S, Gadok AK, Brunaugh AD, Zhao C, Heersema LA, Smyth HD, et al. Connexin membrane materials as potent inhibitors of breast cancer cell migration. J R Soc Interface. 2017;14(133):20170313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Monaghan P, Perusinghe N, Carlile G, Evans WH. Rapid modulation of gap junction expression in mouse mammary gland during pregnancy, lactation, and involution. J Histochem Cytochem. 1994;42(7):931–8.

    Article  CAS  PubMed  Google Scholar 

  30. Locke D, Perusinghe N, Newman T, Jayatilake H, Evans WH, Monaghan P. Developmental expression and assembly of connexins into homomeric and heteromeric gap junction hemichannels in the mouse mammary gland. J Cell Physiol. 2000;183(2):228–37.

    Article  CAS  PubMed  Google Scholar 

  31. Locke D, Stein T, Davies C, Morris J, Harris AL, Evans WH, et al. Altered permeability and modulatory character of connexin channels during mammary gland development. Exp Cell Res. 2004;298(2):643–60.

    Article  CAS  PubMed  Google Scholar 

  32. Locke D, Jamieson S, Stein T, Liu J, Hodgins MB, Harris AL, et al. Nature of Cx30-containing channels in the adult mouse mammary gland. Cell Tissue Res. 2007;328(1):97–107.

    Article  CAS  PubMed  Google Scholar 

  33. Talhouk RS, Elble RC, Bassam R, Daher M, Sfeir A, Mosleh LA, et al. Developmental expression patterns and regulation of connexins in the mouse mammary gland: expression of connexin30 in lactogenesis. Cell Tissue Res. 2005;319(1):49–59.

    Article  CAS  PubMed  Google Scholar 

  34. Dianati E, Poiraud J, Weber-Ouellette A, Plante I. Connexins, E-cadherin, Claudin-7 and β-catenin transiently form junctional nexuses during the post-natal mammary gland development. Dev Biol. 2016;416(1):52–68.

    Article  CAS  PubMed  Google Scholar 

  35. El-Sabban ME, Sfeir AJ, Daher MH, Kalaany NY, Bassam RA, Talhouk RS. ECM-induced gap junctional communication enhances mammary epithelial cell differentiation. J Cell Sci. 2003;116(17):3531–41.

    Article  CAS  PubMed  Google Scholar 

  36. Talhouk RS, Mroue R, Mokalled M, Abi-Mosleh L, Nehme R, Ismail A, et al. Heterocellular interaction enhances recruitment of α and β-catenins and ZO-2 into functional gap-junction complexes and induces gap junction-dependant differentiation of mammary epithelial cells. Exp Cell Res. 2008;314(18):3275–91.

    Article  CAS  PubMed  Google Scholar 

  37. van Genderen C, Okamura RM, Farinas I, Quo R-G, Parslow TG, Bruhn L, et al. Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev. 1994;8(22):2691–703.

    Article  PubMed  Google Scholar 

  38. Fritz G, Just I, Kaina B. Rho GTPases are over-expressed in human tumors. Int J Cancer. 1999;81(5):682–7.

    Article  CAS  PubMed  Google Scholar 

  39. Fritz G, Brachetti C, Bahlmann F, Schmidt M, Kaina B. Rho GTPases in human breast tumours: expression and mutation analyses and correlation with clinical parameters. Br J Cancer. 2002;87(6):635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lin S-Y, Xia W, Wang JC, Kwong KY, Spohn B, Wen Y, et al. β-Catenin, a novel prognostic marker for breast cancer: its roles in cyclin D1 expression and cancer progression. Proc Natl Acad Sci. 2000;97(8):4262–6.

    Article  CAS  PubMed  Google Scholar 

  41. Imbert A, Eelkema R, Jordan S, Feiner H, Cowin P. ΔN89β-catenin induces precocious development, differentiation, and neoplasia in mammary gland. J Cell Biol. 2001;153(3):555–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Milovanovic T, Planutis K, Nguyen A, Marsh JL, Lin F, Hope C, et al. Expression of Wnt genes and frizzled 1 and 2 receptors in normal breast epithelium and infiltrating breast carcinoma. Int J Oncol. 2004;25(5):1337–42.

    CAS  PubMed  Google Scholar 

  43. Ewald AJ, Brenot A, Duong M, Chan BS, Werb Z. Collective epithelial migration and cell rearrangements drive mammary branching morphogenesis. Dev Cell. 2008;14(4):570–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Prasad CP, Mirza S, Sharma G, Prashad R, DattaGupta S, Rath G, et al. Epigenetic alterations of CDH1 and APC genes: relationship with activation of Wnt/β-catenin pathway in invasive ductal carcinoma of breast. Life Sci. 2008;83(9–10):318–25.

    Article  CAS  PubMed  Google Scholar 

  45. Lindvall C, Zylstra CR, Evans N, West RA, Dykema K, Furge KA, et al. The Wnt co-receptor Lrp6 is required for normal mouse mammary gland development. PLoS One. 2009;4(6):e5813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Raymond K, Cagnet S, Kreft M, Janssen H, Sonnenberg A, Glukhova MA. Control of mammary myoepithelial cell contractile function by α3β1 integrin signalling. EMBO J. 2011;30(10):1896–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bray K, Gillette M, Young J, Loughran E, Hwang M, Sears JC, et al. Cdc42 overexpression induces hyperbranching in the developing mammary gland by enhancing cell migration. Breast Cancer Res. 2013;15(5):R91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bagci H, Laurin M, Huber J, Muller W, Cote J. Impaired cell death and mammary gland involution in the absence of Dock1 and Rac1 signaling. Cell Death Dis. 2014;5(8):e1375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Van der Heyden M, Rook MB, Hermans M, Rijksen G, Boonstra J, Defize L, et al. Identification of connexin43 as a functional target for Wnt signalling. J Cell Sci. 1998;111(12):1741–9.

    PubMed  Google Scholar 

  50. Constantinou T, Baumann F, Lacher MD, Saurer S, Friis R, Dharmarajan A. SFRP-4 abrogates Wnt-3a-induced β-catenin and Akt/PKB signalling and reverses a Wnt-3a-imposed inhibition of in vitro mammary differentiation. J Mol Signal. 2008;3(1):10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Baxley SE, Jiang W, Serra R. Misexpression of wingless-related MMTV integration site 5A in mouse mammary gland inhibits the milk ejection response and regulates connexin43 phosphorylation. Biol Reprod. 2011;85(5):907–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang H-X, Gillio-Meina C, Chen S, Gong X-Q, Li TY, Bai D, et al. The canonical WNT2 pathway and FSH interact to regulate gap junction assembly in mouse granulosa cells. Biol Reprod. 2013;89(2):39. 1-7

    Article  CAS  PubMed  Google Scholar 

  53. Zhai Y, Wu R, Schwartz DR, Darrah D, Reed H, Kolligs FT, et al. Role of β-catenin/T-cell factor-regulated genes in ovarian endometrioid adenocarcinomas. Am J Pathol. 2002;160(4):1229–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ai Z, Fischer A, Spray DC, Brown AM, Fishman GI. Wnt-1 regulation of connexin43 in cardiac myocytes. J Clin Invest. 2000;105(2):161–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mureli S, Gans CP, Bare DJ, Geenen DL, Kumar NM, Banach K. Mesenchymal stem cells improve cardiac conduction by upregulation of connexin 43 through paracrine signaling. Am J Phys Heart Circ Phys. 2012;304(4):H600–H9.

    Google Scholar 

  56. Kamei J, Toyofuku T, Hori M. Negative regulation of p21 by β-catenin/TCF signaling: a novel mechanism by which cell adhesion molecules regulate cell proliferation. Biochem Biophys Res Commun. 2003;312(2):380–7.

    Article  CAS  PubMed  Google Scholar 

  57. Sirnes S, Bruun J, Kolberg M, Kjenseth A, Lind GE, Svindland A, et al. Connexin43 acts as a colorectal cancer tumor suppressor and predicts disease outcome. Int J Cancer. 2012;131(3):570–81.

    Article  CAS  PubMed  Google Scholar 

  58. Yu SC, Xiao HL, Jiang XF, Wang QL, Li Y, Yang XJ, et al. Connexin 43 reverses malignant phenotypes of glioma stem cells by modulating E-cadherin. Stem Cells. 2012;30(2):108–20.

    Article  CAS  PubMed  Google Scholar 

  59. Paine IS, Lewis MT. The terminal end bud: the little engine that could. J Mammary Gland Biol Neoplasia. 2017;22(2):93–108.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Musumeci G, Castrogiovanni P, Szychlinska MA, Aiello FC, Vecchio GM, Salvatorelli L, et al. Mammary gland: from embryogenesis to adult life. Acta Histochem. 2015;117(4–5):379–85.

    Article  CAS  PubMed  Google Scholar 

  61. Veltmaat JM, Van Veelen W, Thiery JP, Bellusci S. Identification of the mammary line in mouse by Wnt10b expression. Dev Dyn. 2004;229(2):349–56.

    Article  CAS  PubMed  Google Scholar 

  62. Gjorevski N, Nelson CM. Integrated morphodynamic signalling of the mammary gland. Nat Rev Mol Cell Biol. 2011;12(9):581.

    Article  CAS  PubMed  Google Scholar 

  63. Brisken C, O’Malley B. Hormone action in the mammary gland. Cold Spring Harbor Perspect Biol. 2010; https://doi.org/10.1101/cshperspect.a003178.

  64. Parsa S, Ramasamy SK, De Langhe S, Gupte VV, Haigh JJ, Medina D, et al. Terminal end bud maintenance in mammary gland is dependent upon FGFR2b signaling. Dev Biol. 2008;317(1):121–31.

    Article  CAS  PubMed  Google Scholar 

  65. Hinck L, Silberstein GB. Key stages in mammary gland development: the mammary end bud as a motile organ. Breast Cancer Res. 2005;7(6):245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Atwood C, Hovey R, Glover J, Chepko G, Ginsburg E, Robison W, et al. Progesterone induces side-branching of the ductal epithelium in the mammary glands of peripubertal mice. J Endocrinol. 2000;167(1):39–52.

    Article  CAS  PubMed  Google Scholar 

  67. Brisken C. Hormonal control of alveolar development and its implications for breast carcinogenesis. J Mammary Gland Biol Neoplasia. 2002;7(1):39–48.

    Article  PubMed  Google Scholar 

  68. Oakes SR, Rogers RL, Naylor MJ, Ormandy CJ. Prolactin regulation of mammary gland development. J Mammary Gland Biol Neoplasia. 2008;13(1):13–28.

    Article  PubMed  Google Scholar 

  69. Howard BA, Gusterson BA. Human breast development. J Mammary Gland Biol Neoplasia. 2000;5(2):119–37.

    Article  CAS  PubMed  Google Scholar 

  70. Zhu J, Xiong G, Trinkle C, Xu R. Integrated extracellular matrix signaling in mammary gland development and breast cancer progression. Histol Histopathol. 2014;29(9):1083.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Xu R, Boudreau A, Bissell MJ. Tissue architecture and function: dynamic reciprocity via extra-and intra-cellular matrices. Cancer Metastasis Rev. 2009;28(1–2):167–76.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Talhouk RS, Bissell MJ, Werb Z. Coordinated expression of extracellular matrix-degrading proteinases and their inhibitors regulates mammary epithelial function during involution. J Cell Biol. 1992;118(5):1271–82.

    Article  CAS  PubMed  Google Scholar 

  73. Wiseman BS, Sternlicht MD, Lund LR, Alexander CM, Mott J, Bissell MJ, et al. Site-specific inductive and inhibitory activities of MMP-2 and MMP-3 orchestrate mammary gland branching morphogenesis. J Cell Biol. 2003;162(6):1123–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dermietzel R, Hwang T, Spray D. The gap junction family: structure, function and chemistry. Anat Embryol. 1990;182(6):517–28.

    Article  CAS  PubMed  Google Scholar 

  75. Söhl G, Willecke K. Gap junctions and the connexin protein family. Cardiovasc Res. 2004;62(2):228–32.

    Article  CAS  PubMed  Google Scholar 

  76. Dbouk HA, Mroue RM, El-Sabban ME, Talhouk RS. Connexins: a myriad of functions extending beyond assembly of gap junction channels. Cell Commun Signal. 2009;7(1):4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Leithe E, Mesnil M, Aasen T. The connexin 43 C-terminus: A tail of many tales. Biochim Biophys Acta. 2018;1860(1):48–64.

  78. Su V, Lau AF. Connexins: mechanisms regulating protein levels and intercellular communication. FEBS Lett. 2014;588(8):1212–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kelly JJ, Simek J, Laird DW. Mechanisms linking connexin mutations to human diseases. Cell Tissue Res. 2015;360(3):701–21.

    Article  CAS  PubMed  Google Scholar 

  80. Naus CC, Laird DW. Implications and challenges of connexin connections to cancer. Nat Rev Cancer. 2010;10(6):435.

    Article  CAS  PubMed  Google Scholar 

  81. El-Saghir JA, El-Habre ET, El-Sabban ME, Talhouk RS. Connexins: a junctional crossroad to breast cancer. Int J Dev Biol. 2011;55(7-8-9):773–80.

    Article  PubMed  Google Scholar 

  82. Monaghan P, Clarke C, Perusinghe NP, Moss DW, Chen X-Y, Evans WH. Gap junction distribution and connexin expression in human breast. Exp Cell Res. 1996;223(1):29–38.

    Article  CAS  PubMed  Google Scholar 

  83. Jamieson S, Going JJ, D'Arcy R, George WD. Expression of gap junction proteins connexin 26 and connexin 43 in normal human breast and in breast tumours. J Pathol. 1998;184(1):37–43.

    Article  CAS  PubMed  Google Scholar 

  84. Pozzi A, Risek B, Kiang DT, Gilula NB, Kumar NM. Analysis of multiple gap junction gene products in the rodent and human mammary gland. Exp Cell Res. 1995;220(1):212–9.

    Article  CAS  PubMed  Google Scholar 

  85. Lambe T, Finlay D, Murphy M, Martin F. Differential expression of connexin 43 in mouse mammary cells. Cell Biol Int. 2006;30(5):472–9.

    Article  CAS  PubMed  Google Scholar 

  86. Reaume AG, de Sousa PA, Kulkarni S, Langille BL, Zhu D, Davies TC, et al. Cardiac malformation in neonatal mice lacking connexin43. Science. 1995;267(5205):1831–4.

    Article  CAS  PubMed  Google Scholar 

  87. Gabriel H-D, Jung D, Bützler C, Temme A, Traub O, Winterhager E, et al. Transplacental uptake of glucose is decreased in embryonic lethal connexin26-deficient mice. J Cell Biol. 1998;140(6):1453–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Stewart MK, Gong X-Q, Barr KJ, Bai D, Fishman GI, Laird DW. The severity of mammary gland developmental defects is linked to the overall functional status of Cx43 as revealed by genetically modified mice. Biochem J. 2013;449(2):401–13.

    Article  CAS  PubMed  Google Scholar 

  89. Plum A, Hallas G, Magin T, Dombrowski F, Hagendorff A, Schumacher B, et al. Unique and shared functions of different connexins in mice. Curr Biol. 2000;10(18):1083–91.

    Article  CAS  PubMed  Google Scholar 

  90. Winterhager E, Pielensticker N, Freyer J, Ghanem A, Schrickel JW, Kim J-S, et al. Replacement of connexin43 by connexin26 in transgenic mice leads to dysfunctional reproductive organs and slowed ventricular conduction in the heart. BMC Dev Biol. 2007;7(1):26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bry C, Maass K, Miyoshi K, Willecke K, Ott T, Robinson GW, et al. Loss of connexin 26 in mammary epithelium during early but not during late pregnancy results in unscheduled apoptosis and impaired development. Dev Biol. 2004;267(2):418–29.

    Article  CAS  PubMed  Google Scholar 

  92. Ormandy CJ, Naylor M, Harris J, Robertson F, Horseman ND, Lindeman GJ, et al. Investigation of the transcriptional changes underlying functional defects in the mammary glands of prolactin receptor knockout mice. Recent Prog Horm Res. 2003;58:297–324.

    Article  CAS  PubMed  Google Scholar 

  93. Mroue R, El-Sabban M, Talhouk R. Connexins and the gap in context. Integr Biol. 2011;3(4):255–66.

    Article  CAS  Google Scholar 

  94. Talhouk RS, Khalil AA, Bajjani R, Rahme GJ, El-Sabban ME. Gap junctions mediate STAT5-independent β-casein expression in CID-9 mammary epithelial cells. Cell Commun Adhes. 2011;18(5):104–16.

    Article  CAS  PubMed  Google Scholar 

  95. Teleki I, Szasz AM, Maros ME, Gyorffy B, Kulka J, Meggyeshazi N, et al. Correlations of differentially expressed gap junction connexins Cx26, Cx30, Cx32, Cx43 and Cx46 with breast cancer progression and prognosis. PLoS One. 2014;9(11):e112541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. MacDonald BT, Tamai K, He X. Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17(1):9–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zardawi SJ, O'Toole SA, Sutherland RL, Musgrove EA. Dysregulation of hedgehog, Wnt and notch signalling pathways in breast cancer. Histol Histopathol. 2009;24(3):385–98.

    CAS  PubMed  Google Scholar 

  98. Rao TP, Kühl M. An updated overview on Wnt signaling pathways: a prelude for more. Circ Res. 2010;106(12):1798–806.

    Article  CAS  PubMed  Google Scholar 

  99. Turashvili G, Bouchal J, Burkadze G, Kolar Z. Wnt signaling pathway in mammary gland development and carcinogenesis. Pathobiology. 2006;73(5):213–23.

    Article  CAS  PubMed  Google Scholar 

  100. Incassati A, Chandramouli A, Eelkema R, Cowin P. Key signaling nodes in mammary gland development and cancer: β-catenin. Breast Cancer Res. 2010;12(6):213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yu QC, Verheyen EM, Zeng YA. Mammary development and breast cancer: a Wnt perspective. Cancers. 2016;8(7):65.

    Article  CAS  PubMed Central  Google Scholar 

  102. Boras-Granic K, Hamel PA. Wnt-signalling in the embryonic mammary gland. J Mammary Gland Biol Neoplasia. 2013;18(2):155–63.

    Article  PubMed  Google Scholar 

  103. Jarde T, Dale T. Wnt signalling in murine postnatal mammary gland development. Acta Physiol. 2012;204(1):118–27.

    Article  CAS  Google Scholar 

  104. Cai C, Yu QC, Jiang W, Liu W, Song W, Yu H, et al. R-spondin1 is a novel hormone mediator for mammary stem cell self-renewal. Genes Dev. 2014; https://doi.org/10.1101/gad.245142.114.

  105. Chu EY, Hens J, Andl T, Kairo A, Yamaguchi TP, Brisken C, et al. Canonical WNT signaling promotes mammary placode development and is essential for initiation of mammary gland morphogenesis. Development. 2004;131(19):4819–29.

    Article  CAS  PubMed  Google Scholar 

  106. Kouros-Mehr H, Werb Z. Candidate regulators of mammary branching morphogenesis identified by genome-wide transcript analysis. Dev Dyn. 2006;235(12):3404–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lane TF, Leder P. Wnt-10b directs hypermorphic development and transformation in mammary glands of male and female mice. Oncogene. 1997;15(18):2133.

    Article  CAS  PubMed  Google Scholar 

  108. Weber-Hall SJ, Phippard DJ, Niemeyer CC, Dale TC. Developmental and hormonal regulation of Wnt gene expression in the mouse mammary gland. Differentiation. 1994;57(3):205–14.

    Article  CAS  PubMed  Google Scholar 

  109. Roarty K, Shore AN, Creighton CJ, Rosen JM. Ror2 regulates branching, differentiation, and actin-cytoskeletal dynamics within the mammary epithelium. J Cell Biol. 2015;208(3):351–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ji H, Goode RJ, Vaillant F, Mathivanan S, Kapp EA, Mathias RA, et al. Proteomic profiling of secretome and adherent plasma membranes from distinct mammary epithelial cell subpopulations. Proteomics. 2011;11(20):4029–39.

    Article  CAS  PubMed  Google Scholar 

  111. Lindvall C, Evans NC, Zylstra CR, Li Y, Alexander CM, Williams BO. The Wnt signaling receptor Lrp5 is required for mammary ductal stem cell activity and Wnt1-induced tumorigenesis. J Biol Chem. 2006;281(46):35081–7.

    Article  CAS  PubMed  Google Scholar 

  112. Brisken C, Heineman A, Chavarria T, Elenbaas B, Tan J, Dey SK, et al. Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. Genes Dev. 2000;14(6):650–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Dolled-Filhart M, McCabe A, Giltnane J, Cregger M, Camp RL, Rimm DL. Quantitative in situ analysis of β-catenin expression in breast cancer shows decreased expression is associated with poor outcome. Cancer Res. 2006;66(10):5487–94.

    Article  CAS  PubMed  Google Scholar 

  114. Sørlie T, Bukholm I, Børresen-Dale A. Truncating somatic mutation in exon 15 of the APC gene is a rare event in human breast carcinomas. Mutations in brief no. 179. Online. Hum Mutat. 1998;12(3):215.

    PubMed  Google Scholar 

  115. Schlosshauer PW, Brown SA, Eisinger K, Yan Q, Guglielminetti ER, Parsons R, et al. APC truncation and increased β-catenin levels in a human breast cancer cell line. Carcinogenesis. 2000;21(7):1453–6.

    Article  CAS  PubMed  Google Scholar 

  116. Jönsson M, Borg Å, Nilbert M, Andersson T. Involvement of adenomatous polyposis coli (APC)/β-catenin signalling in human breast cancer. Eur J Cancer. 2000;36(2):242–8.

    Article  PubMed  Google Scholar 

  117. Sawyer EJ, Hanby AM, Rowan AJ, Gillett CE, Thomas RE, Poulsom R, et al. The Wnt pathway, epithelial–stromal interactions, and malignant progression in phyllodes tumours. J Pathol. 2002;196(4):437–44.

    Article  CAS  PubMed  Google Scholar 

  118. Abraham SC, Reynolds C, Lee J-H, Montgomery EA, Baisden BL, Krasinskas AM, et al. Fibromatosis of the breast and mutations involving the APC/β-catenin pathway. Hum Pathol. 2002;33(1):39–46.

    Article  CAS  PubMed  Google Scholar 

  119. Ozaki S, Ikeda S, Ishizaki Y, Kurihara T, Tokumoto N, Iseki M, et al. Alterations and correlations of the components in the Wnt signaling pathway and its target genes in breast cancer. Oncol Rep. 2005;14(6):1437–43.

    CAS  PubMed  Google Scholar 

  120. Hayes MJ, Thomas D, Emmons A, Giordano TJ, Kleer CG. Genetic changes of Wnt pathway genes are common events in metaplastic carcinomas of the breast. Clin Cancer Res. 2008;14(13):4038–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Huguet EL, McMahon JA, McMahon AP, Bicknell R, Harris AL. Differential expression of human Wnt genes 2, 3, 4, and 7B in human breast cell lines and normal and disease states of human breast tissue. Cancer Res. 1994;54(10):2615–21.

    CAS  PubMed  Google Scholar 

  122. Lejeune S, Huguet EL, Hamby A, Poulsom R, Harris AL. Wnt5a cloning, expression, and up-regulation in human primary breast cancers. Clin Cancer Res. 1995;1(2):215–22.

    CAS  PubMed  Google Scholar 

  123. Björklund P, Svedlund J, Olsson A-K, Åkerström G, Westin G. The internally truncated LRP5 receptor presents a therapeutic target in breast cancer. PLoS One. 2009;4(1):e4243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Liu C-C, Prior J, Piwnica-Worms D, Bu G. LRP6 overexpression defines a class of breast cancer subtype and is a target for therapy. Proc Natl Acad Sci. 2010;107(11):5136–41.

    Article  PubMed  Google Scholar 

  125. Nagahata T, Shimada T, Harada A, Nagai H, Onda M, Yokoyama S, et al. Amplification, up-regulation and over-expression of DVL-1, the human counterpart of the Drosophila disheveled gene, in primary breast cancers. Cancer Sci. 2003;94(6):515–8.

    Article  CAS  PubMed  Google Scholar 

  126. Van der Auwera I, Van Laere SJ, Van den Bosch S, Van den Eynden G, Trinh B, Van Dam P, et al. Aberrant methylation of the adenomatous polyposis coli (APC) gene promoter is associated with the inflammatory breast cancer phenotype. Br J Cancer. 2008;99(10):1735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ai L, Tao Q, Zhong S, Fields CR, Kim W-J, Lee MW, et al. Inactivation of Wnt inhibitory factor-1 (WIF1) expression by epigenetic silencing is a common event in breast cancer. Carcinogenesis. 2006;27(7):1341–8.

    Article  CAS  PubMed  Google Scholar 

  128. Suzuki H, Toyota M, Caraway H, Gabrielson E, Ohmura T, Fujikane T, et al. Frequent epigenetic inactivation of Wnt antagonist genes in breast cancer. Br J Cancer. 2008;98(6):1147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Shulewitz M, Soloviev I, Wu T, Koeppen H, Polakis P, Sakanaka C. Repressor roles for TCF-4 and Sfrp1 in Wnt signaling in breast cancer. Oncogene. 2006;25(31):4361.

    Article  CAS  PubMed  Google Scholar 

  130. Bivi N, Pacheco-Costa R, Brun LR, Murphy TR, Farlow NR, Robling AG, et al. Absence of Cx43 selectively from osteocytes enhances responsiveness to mechanical force in mice. J Orthop Res. 2013;31(7):1075–81.

    Article  CAS  PubMed  Google Scholar 

  131. Rinaldi F, Hartfield E, Crompton L, Badger J, Glover C, Kelly C, et al. Cross-regulation of Connexin43 and β-catenin influences differentiation of human neural progenitor cells. Cell Death Dis. 2015;5(1):e1017.

    Article  CAS  Google Scholar 

  132. Pacheco-Costa R, Kadakia JR, Atkinson EG, Wallace JM, Plotkin LI, Reginato RD. Connexin37 deficiency alters organic bone matrix, cortical bone geometry, and increases Wnt/β-catenin signaling. Bone. 2017;97:105–13.

    Article  CAS  PubMed  Google Scholar 

  133. Ishikawa M, Iwamoto T, Fukumoto S, Yamada Y. Pannexin 3 inhibits proliferation of osteoprogenitor cells by regulating Wnt and p21 signaling. J Biol Chem. 2014;289(5):2839–51.

    Article  CAS  PubMed  Google Scholar 

  134. Czyz J, Guan K, Zeng Q, Wobus AM. Loss of beta1 integrin function results in upregulation of connexin expression in embryonic stem cell-derived cardiomyocytes. Int J Dev Biol. 2003;49(1):33–41.

    Article  CAS  Google Scholar 

  135. Du W, Li J, Du W, Li J, Wang Q, Hou J, et al. Lithium chloride regulates Connexin43 in skeletal myoblasts in vitro: possible involvement in Wnt/β-Catenin signaling. Cell Commun Adhes. 2008;15(3):261–71.

    Article  CAS  PubMed  Google Scholar 

  136. Heo JS, Lee JC. β-Catenin mediates cyclic strain-stimulated cardiomyogenesis in mouse embryonic stem cells through ROS-dependent and integrin-mediated PI3K/Akt pathways. J Cell Biochem. 2011;112(7):1880–9.

    Article  CAS  PubMed  Google Scholar 

  137. Guger KA, Gumbiner BM. β-Catenin has Wnt-like activity and mimics the Nieuwkoop signaling center inXenopusDorsal–ventral patterning. Dev Biol. 1995;172(1):115–25.

    Article  CAS  PubMed  Google Scholar 

  138. Samarzija I, Sini P, Schlange T, MacDonald G, Hynes NE. Wnt3a regulates proliferation and migration of HUVEC via canonical and non-canonical Wnt signaling pathways. Biochem Biophys Res Commun. 2009;386(3):449–54.

    Article  CAS  PubMed  Google Scholar 

  139. Prunskaite-Hyyryläinen R, Shan J, Railo A, Heinonen KM, Miinalainen I, Yan W, et al. Wnt4, a pleiotropic signal for controlling cell polarity, basement membrane integrity, and antimüllerian hormone expression during oocyte maturation in the female follicle. FASEB J. 2014;28(4):1568–81.

    Article  CAS  PubMed  Google Scholar 

  140. Umazume K, Tsukahara R, Liu L, de Castro JPF, McDonald K, Kaplan HJ, et al. Role of retinal pigment epithelial cell β-catenin signaling in experimental proliferative vitreoretinopathy. Am J Pathol. 2014;184(5):1419–28.

    Article  CAS  PubMed  Google Scholar 

  141. Phillips SL, Williams CB, Zambrano JN, Williams CJ, Yeh ES. Connexin 43 in the development and progression of breast cancer: What's the connection? Int J Oncol. 2017;51(4):1005–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Banerjee D. Connexin’s connection in breast cancer growth and progression. Int J Cell Biol. 2016;2016

  143. Komiya Y, Habas R. Wnt signal transduction pathways. Organ. 2008;4(2):68–75.

    Google Scholar 

  144. Segalen M, Bellaïche Y, editors. Cell division orientation and planar cell polarity pathways. Seminars in cell & developmental biology; 2009: Elsevier.

  145. Gómez-Orte E, Sáenz-Narciso B, Moreno S, Cabello J. Multiple functions of the noncanonical Wnt pathway. Trends Genet. 2013;29(9):545–53.

    Article  CAS  PubMed  Google Scholar 

  146. Sokol SY, editor. Spatial and temporal aspects of Wnt signaling and planar cell polarity during vertebrate embryonic development. Seminars in cell & developmental biology; 2015: Elsevier.

  147. Sedgwick AE, D’Souza-Schorey C. Wnt signaling in cell motility and invasion: drawing parallels between development and cancer. Cancers. 2016;8(9):80.

    Article  CAS  PubMed Central  Google Scholar 

  148. Dunn NR, Tolwinski NS. Ptk7 and Mcc, unfancied components in non-canonical wnt signaling and cancer. Cancers. 2016;8(7):68.

    Article  CAS  PubMed Central  Google Scholar 

  149. De A. Wnt/Ca2+ signaling pathway: a brief overview. Acta Biochim Biophys Sin. 2011;43(10):745–56.

    Article  CAS  PubMed  Google Scholar 

  150. Green J, Nusse R, van Amerongen R. The role of Ryk and Ror receptor tyrosine kinases in Wnt signal transduction. Cold Spring Harbor Perspect Biol. 2013; https://doi.org/10.1101/cshperspect.a009175.

  151. Angers S, Moon RT. Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol. 2009;10(7):468.

    Article  CAS  PubMed  Google Scholar 

  152. Debebe Z, Rathmell WK. Ror2 as a therapeutic target in cancer. Pharmacol Ther. 2015;150:143–8.

    Article  CAS  PubMed  Google Scholar 

  153. Clark CE, Nourse CC, Cooper HM. The tangled web of non-canonical Wnt signalling in neural migration. Neurosignals. 2012;20(3):202–20.

    Article  CAS  PubMed  Google Scholar 

  154. Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature. 2002;420(6916):629.

    Article  CAS  PubMed  Google Scholar 

  155. Schlessinger K, Hall A, Tolwinski N. Wnt signaling pathways meet Rho GTPases. Genes Dev. 2009;23(3):265–77.

    Article  CAS  PubMed  Google Scholar 

  156. Hanna S, El-Sibai M. Signaling networks of Rho GTPases in cell motility. Cell Signal. 2013;25(10):1955–61.

    Article  CAS  PubMed  Google Scholar 

  157. Mack NA, Georgiou M. The interdependence of the Rho GTPases and apicobasal cell polarity. Small GTPases. 2014;5(2):e973768.

    Article  PubMed Central  Google Scholar 

  158. Burbelo P, Wellstein A, Pestell RG. Altered Rho GTPase signaling pathways in breast cancer cells. Breast Cancer Res Treat. 2004;84(1):43–8.

    Article  CAS  PubMed  Google Scholar 

  159. Zuo Y, Oh W, Ulu A, Frost JA. Minireview: mouse models of Rho GTPase function in mammary gland development, tumorigenesis, and metastasis. Mol Endocrinol. 2016;30(3):278–89.

    Article  CAS  PubMed  Google Scholar 

  160. Bray K, Brakebusch C, Vargo-Gogola T. The Rho GTPase Cdc42 is required for primary mammary epithelial cell morphogenesis in vitro. Small GTPases. 2011;2(5):247–58.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Druso JE, Endo M, Lin M-CJ, Peng X, Antonyak MA, Meller S, et al. An essential role for Cdc42 in the functioning of the adult mammary gland. J Biol Chem. 2016;291(17):8886–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ahn S-J, Chung K-W, Lee R-A, Park I-A, Lee S-H, Park DE, et al. Overexpression of βPix-a in human breast cancer tissues. Cancer Lett. 2003;193(1):99–107.

    Article  CAS  PubMed  Google Scholar 

  163. Lane J, Martin TA, Mansel RE, Jiang WG, editors. The expression and prognostic value of the guanine nucleotide exchange factors (GEFs) Trio, Vav1 and TIAM-1 in human breast cancer. International Seminars in Surgical Oncology; 2008: BioMed Central.

  164. Hanna S, Khalil B, Nasrallah A, Saykali BA, Sobh R, Nasser S, et al. StarD13 is a tumor suppressor in breast cancer that regulates cell motility and invasion. Int J Oncol. 2014;44(5):1499–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. El-Sibai M, Pertz O, Pang H, Yip S-C, Lorenz M, Symons M, et al. RhoA/ROCK-mediated switching between Cdc42-and Rac1-dependent protrusion in MTLn3 carcinoma cells. Exp Cell Res. 2008;314(7):1540–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. El-Sibai M, Nalbant P, Pang H, Flinn RJ, Sarmiento C, Macaluso F, et al. Cdc42 is required for EGF-stimulated protrusion and motility in MTLn3 carcinoma cells. J Cell Sci. 2007;120(19):3465–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Pillé J-Y, Denoyelle C, Varet J, Bertrand J-R, Soria J, Opolon P, et al. Anti-RhoA and anti-RhoC siRNAs inhibit the proliferation and invasiveness of MDA-MB-231 breast cancer cells in vitro and in vivo. Mol Ther. 2005;11(2):267–74.

    Article  CAS  PubMed  Google Scholar 

  168. Wyckoff JB, Pinner SE, Gschmeissner S, Condeelis JS, Sahai E. ROCK-and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo. Curr Biol. 2006;16(15):1515–23.

    Article  CAS  PubMed  Google Scholar 

  169. Bravo-Cordero JJ, Sharma VP, Roh-Johnson M, Chen X, Eddy R, Condeelis J, et al. Spatial regulation of RhoC activity defines protrusion formation in migrating cells. J Cell Sci. 2013; https://doi.org/10.1242/jcs.123547.

  170. Bravo-Cordero JJ, Oser M, Chen X, Eddy R, Hodgson L, Condeelis J. A novel spatiotemporal RhoC activation pathway locally regulates cofilin activity at invadopodia. Curr Biol. 2011;21(8):635–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Moshfegh Y, Bravo-Cordero JJ, Miskolci V, Condeelis J, Hodgson L. A Trio–Rac1–Pak1 signalling axis drives invadopodia disassembly. Nat Cell Biol. 2014;16(6):571.

    Article  CAS  Google Scholar 

  172. Yip S-C, El-Sibai M, Coniglio SJ, Mouneimne G, Eddy RJ, Drees BE, et al. The distinct roles of Ras and Rac in PI 3-kinase-dependent protrusion during EGF-stimulated cell migration. J Cell Sci. 2007;120(17):3138–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Zhao X, Lu L, Pokhriyal N, Ma H, Duan L, Lin S, et al. Overexpression of RhoA induces preneoplastic transformation of primary mammary epithelial cells. Cancer Res. 2009;69(2):483–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Chan C-H, Lee S-W, Li C-F, Wang J, Yang W-L, Wu C-Y, et al. Deciphering the transcriptional complex critical for RhoA gene expression and cancer metastasis. Nat Cell Biol. 2010;12(5):457.

    Article  CAS  PubMed  Google Scholar 

  175. Castillo-Pichardo L, Humphries-Bickley T, De La Parra C, Forestier-Roman I, Martinez-Ferrer M, Hernandez E, et al. The Rac inhibitor EHop-016 inhibits mammary tumor growth and metastasis in a nude mouse model. Transl Oncol. 2014;7(5):546–55.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Citi S, Guerrera D, Spadaro D, Shah J. Epithelial junctions and Rho family GTPases: the zonular signalosome. Small GTPases. 2014;5(4):e973760.

    Article  CAS  PubMed Central  Google Scholar 

  177. Yagi S, Matsuda M, Kiyokawa E. Suppression of Rac1 activity at the apical membrane of MDCK cells is essential for cyst structure maintenance. EMBO Rep. 2012;13(3):237–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Timmerman I, Heemskerk N, Kroon J, Schaefer A, van Rijssel J, Hoogenboezem M, et al. A local VE-cadherin and trio-based signaling complex stabilizes endothelial junctions through Rac1. J Cell Sci. 2015;128(16):3041–54.

    Article  CAS  PubMed  Google Scholar 

  179. K-i K, Melendez J, Baumann JM, Leslie JR, Chauhan BK, Nemkul N, et al. Loss of RhoA in neural progenitor cells causes the disruption of adherens junctions and hyperproliferation. Proc Natl Acad Sci. 2011;108(18):7607–12.

    Article  Google Scholar 

  180. Herder C, Swiercz JM, Müller C, Peravali R, Quiring R, Offermanns S, et al. ArhGEF18 regulates RhoA-Rock2 signaling to maintain neuro-epithelial apico-basal polarity and proliferation. Development. 2013;140(13):2787–97.

    Article  CAS  PubMed  Google Scholar 

  181. Wu X, Li S, Chrostek-Grashoff A, Czuchra A, Meyer H, Yurchenco PD, et al. Cdc42 is crucial for the establishment of epithelial polarity during early mammalian development. Dev Dyn. 2007;236(10):2767–78.

    Article  CAS  PubMed  Google Scholar 

  182. Wei L, Taffet GE, Khoury DS, Bo J, Li Y, Yatani A, et al. Disruption of Rho signaling results in progressive atrioventricular conduction defects while ventricular function remains preserved. FASEB J. 2004;18(7):857–9.

    Article  CAS  PubMed  Google Scholar 

  183. Maddala R, Deng P-F, Costello JM, Wawrousek EF, Zigler JS, Rao VP. Impaired cytoskeletal organization and membrane integrity in lens fibers of a Rho GTPase functional knockout transgenic mouse. Lab Investig. 2004;84(6):679.

    Article  CAS  PubMed  Google Scholar 

  184. Wang L, Liu S, Zhang H, Hu S, Wei Y. RhoA activity increased in myocardium of arrhythmogenic cardiomyopathy patients and affected connexin 43 protein expression in HL-1 cells. Int J Clin Exp Med. 2015;8(8):12906.

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Matsuda T, Fujio Y, Nariai T, Ito T, Yamane M, Takatani T, et al. N-cadherin signals through Rac1 determine the localization of connexin 43 in cardiac myocytes. J Mol Cell Cardiol. 2006;40(4):495–502.

    Article  CAS  PubMed  Google Scholar 

  186. Van Hengel J, D’Hooge P, Hooghe B, Wu X, Libbrecht L, De Vos R, et al. Continuous cell injury promotes hepatic tumorigenesis in cdc42-deficient mouse liver. Gastroenterology. 2008;134(3):781–92.

    Article  CAS  PubMed  Google Scholar 

  187. Anderson SC, Stone C, Tkach L, SundarRaj N. Rho and Rho-kinase (ROCK) signaling in adherens and gap junction assembly in corneal epithelium. Invest Ophthalmol Vis Sci. 2002;43(4):978–86.

    PubMed  Google Scholar 

  188. Derangeon M, Bourmeyster N, Plaisance I, Pinet-Charvet C, Chen Q, Duthe F, et al. RhoA GTPase and F-actin dynamically regulate the permeability of Cx43-made channels in rat cardiac myocytes. J Biol Chem. 2008;283(45):30754–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Geletu M, Guy S, Greer S, Raptis L. Differential effects of polyoma virus middle tumor antigen mutants upon gap junctional, intercellular communication. Exp Cell Res. 2015;336(2):223–31.

    Article  CAS  PubMed  Google Scholar 

  190. Ito S, Ito Y, Senga T, Hattori S, Matsuo S, Hamaguchi M. v-Src requires Ras signaling for the suppression of gap junctional intercellular communication. Oncogene. 2006;25(16):2420.

    Article  CAS  PubMed  Google Scholar 

  191. Stains JP, Civitelli R. Gap junctions regulate extracellular signal-regulated kinase signaling to affect gene transcription. Mol Biol Cell. 2005;16(1):64–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Somekawa S, Fukuhara S, Nakaoka Y, Fujita H, Saito Y, Mochizuki N. Enhanced functional gap junction neoformation by protein kinase A–dependent and Epac-dependent signals downstream of cAMP in cardiac myocytes. Circ Res. 2005;97(7):655–62.

    Article  CAS  PubMed  Google Scholar 

  193. Hayashi T, Nomata K, Chang C-C, Ruch RJ, Trosko JE. Cooperative effects of v-myc and c-Ha-ras oncogenes on gap junctional intercellular communication and tumorigenicity in rat liver epithelial cells. Cancer Lett. 1998;128(2):145–54.

    Article  CAS  PubMed  Google Scholar 

  194. Chen X, Shuzo O, Li Y, Han R. Effect of d-limonene, Salvia miltiorrhiza and turmeric derivatives on membrane association of Ras gene product and gap junction intercellular communication. Yao xue xue bao= Acta Pharmaceutica Sinica. 1998;33(11):821–7.

  195. Brownell HL, Whitfield JF, Raptis L. Cellular Ras partly mediates gap junction closure by the polyoma virus middle tumor antigen. Cancer Lett. 1996;103(1):99–106.

    Article  CAS  PubMed  Google Scholar 

  196. Brownell HL, Whitfield JF, Raptis L. Elimination of intercellular junctional communication requires lower Ras (leu61) levels than stimulation of anchorage-independent proliferation. Cancer Detect Prev. 1997;21(4):289–94.

    CAS  PubMed  Google Scholar 

  197. Brownell HL, Narsimhan RP, Corbley MJ, Mann VM, Whitfield JF, Raptis L. Ras is involved in gap junction closure in proliferating fibroblasts or preadipocytes but not in differentiated adipocytes. DNA Cell Biol. 1996;15(6):443–51.

    Article  CAS  PubMed  Google Scholar 

  198. Zhang J, Yang G-M, Zhu Y, Peng X-Y, Liu L-M, Li T. Bradykinin induces vascular contraction after hemorrhagic shock in rats. J Surg Res. 2015;193(1):334–43.

    Article  CAS  PubMed  Google Scholar 

  199. Sin W-C, Tse M, Planque N, Perbal B, Lampe PD, Naus CC. Matricellular protein CCN3 (NOV) regulates actin cytoskeleton reorganization. J Biol Chem. 2009;284(43):29935–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Liu X, Hashimoto-Torii K, Torii M, Ding C, Rakic P. Gap junctions/hemichannels modulate interkinetic nuclear migration in the forebrain precursors. J Neurosci. 2010;30(12):4197–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Mendoza-Naranjo A, Cormie P, Serrano AE, Hu R, O'Neill S, Wang CM, et al. Targeting Cx43 and N-cadherin, which are abnormally upregulated in venous leg ulcers, influences migration, adhesion and activation of Rho GTPases. PLoS One. 2012;7(5):e37374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Machtaler S, Choi K, Dang-Lawson M, Falk L, Pournia F, Naus CC, et al. The role of the gap junction protein connexin43 in B lymphocyte motility and migration. FEBS Lett. 2014;588(8):1249–58.

    Article  CAS  PubMed  Google Scholar 

  203. Machtaler S, Dang-Lawson M, Choi K, Jang C, Naus CC, Matsuuchi L. The gap junction protein Cx43 regulates B-lymphocyte spreading and adhesion. J Cell Sci. 2011;124(15):2611–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Lebanese National Council for Scientific Research (CNRS-L) and the AUB University Research Board (URB) to Rabih S. Talhouk, and the LAU School of Arts and Science Research and Development Council (SAS-RDC) to Mirvat El-Sibai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabih S. Talhouk.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fostok, S.F., El-Sibai, M., El-Sabban, M. et al. Gap Junctions and Wnt Signaling in the Mammary Gland: a Cross-Talk?. J Mammary Gland Biol Neoplasia 24, 17–38 (2019). https://doi.org/10.1007/s10911-018-9411-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-018-9411-5

Keywords

Navigation